
Int. J. Intelligent Information and Database Systems, Vol. 11, No. 1, 2018 79

Intensional FOL for reasoning about probabilities
and probabilistic logic programming

Zoran Majkić
ISRST,
Roma, Italy
Email: majk.1234@yahoo.com

Bhanu Prasad*
Department of Computer and Information Sciences,
Florida A&M University,
Tallahassee, Florida 32307, USA
Email: bhanu.prasad@famu.edu
*Corresponding author

Abstract: It is important to have a logic, both for computation of
probabilities and for reasoning about probabilities, with well-defined syntax
and semantics. The current approaches, which are based on Nilsson’s
probability structures/logics as well as linear inequalities, to reason about
probabilities, have some deficiencies. In this research, we have presented a
complete revision of those approaches and have shown that the logic for
reasoning about probabilities can be naturally embedded into a 2-valued
intensional first-order logic (FOL) with intensional abstraction, by avoiding
current ad-hoc system composed of two different 2-valued logics: one for the
classical propositional logic at a lower-level and a new one, at a higher-level,
for probabilistic constraints with probabilistic variables. The theoretical results
that are obtained are applied to probabilistic logic programming.

Keywords: probabilities; 2-valued intensional first-order logic; Nilsson’s
probability structures; linear inequalities.

Reference to this paper should be made as follows: Majkić, Z. and Prasad, B.
(2018) ‘Intensional FOL for reasoning about probabilities and probabilistic
logic programming’, Int. J. Intelligent Information and Database Systems,
Vol. 11, No 1, pp.79–96.

Biographical notes: Zoran Majkić received his Master of Telecommunication
in Electromagnetic Engineering from ETF University of Belgrade, where he
worked for two years as an Assistant Professor. After that he changed his
work and started doing research in computer science and received his PhD in
Computer Science from La Sapienza University, Roma, Italy. He is currently
working as an Information Technology Advisor and also doing research
in computer science and quantum physics. His research interests include
knowledge-base and database systems, artificial intelligence and category
theory and algebras.

Copyright © 2018 Inderscience Enterprises Ltd.

80 Z. Majkić and B. Prasad

Bhanu Prasad received his Master of Technology and PhD, both in Computer
Science, from Andhra University and Indian Institute of Technology Madras,
respectively. He is currently working as a Professor in the Department
of Computer and Information Sciences at Florida A&M University in
Tallahassee, Florida, USA. His current research interests include artificial
intelligence and knowledge-based systems.

1 Introduction

In this research, we consider the probabilistic semantics for the propositional logic
(which can be easily extended to predicate logics as well) (Nilsson, 1986; Fagin et al.,
1990) with a fixed finite set Φ = {p1, ..., pn} of primitive propositions, which can
be thought of as corresponding to basic probabilistic events. The set L(Φ) of the
propositional formulae is the closure of Φ under the Boolean operations for conjunction
and negation, ∧ and ¬, that is, (Φ, {∧,¬}) is the set of all formulae of the propositional
logic.

In order to give the probabilistic semantics to such formulae, we first need to briefly
review the probability theory [see, for example, Feller (1957) and Halmos (1950)]:

A probability space (S,X , µ) consists of a set S, called the sample space, a
σ-algebra X of subsets of S (i.e., a set of subsets of S containing S and closed under
complementation and countable union, but not necessarily consisting of all subsets of
S) whose elements are called measurable sets, and a probability measure µ : X → [0, 1]
where [0, 1] is the closed interval of reals from zero to one. This mapping satisfies
Kolmogorov axioms (Kolmogorov, 1986):

A.1 µ ≥ 0 for all X ∈ X .

A.2 µ(S) = 1.

A.3 µ(
∪

i≥1Xi) =
∑

i≥1 µ(Xi), if Xi’s are nonempty pairwise disjoint members
of X .

The µ({s}) is the value of probability in a single point of space s.
The property A.3 is called countable additivity for the probabilities in a space S. If

X is a finite set, then the above property A.3 can be simplified as
A.3’ µ(X

∪
Y) = µ(X) + µ(Y),

if X and Y are disjoint members of X , or, equivalently, to the following axiom:
A.3” µ(X) = µ(X

∩
Y) + µ(X

∩
Y),

where Y is the compliment of Y in S, so that µ(X) = 1− µ(X).
In this research, we consider only finite sample space S, so that X = P(S) is the

set of all subsets of S. Thus, in our case of a finite set S, we obtain, form A.1 and A.2,
that for any X ∈ P(S), µ(X) =

∑
s∈X µ({s}).

Based on the work of Nilsson (1986), we can define, for a given propositional
logic with a finite set of primitive proposition Φ, the sample space S = 2Φ, where
2 = {0, 1} ⊂ [0, 1], so that the probability space is equal to the Nilsson structure N =
(2Φ,P(2Φ), µ).

Intensional FOL for reasoning about probabilities 81

In his work [page 72, line 4–6 in Nilsson (1986)], Nilsson considered a probabilistic
logic “which the truth values of sentences can range between 0 and 1. The truth value
of a sentence in probabilistic logic is taken to be the probability of that sentence in
ordinary first-order logic”. That is, he considered this logic as a kind of a many-valued
logic, but not a compositional truth-valued logic. However in his paper, he did not
define the formal syntax and semantics for such a probabilistic logic, but defined only
the matrix equations where the probability of a sentence ϕ ∈ L(Φ) is the sum of the
probabilities of the sets of possible worlds (equal to the set S = 2Φ) in which that
sentence is true. Therefore he assigned two different logic values to each sentence ϕ:
one is its probability value and another is a classic 2-valued truth value in a given
possible world. It is formally contradicting with his intension paraphrased above. In fact,
as we discussed in one of the following sections, the correct formalization of such a
many-valued logic with probabilistic semantics is different, and more complex, from his
intuitive initial idea.

The logic inadequacy of this seminal work of Nilsson (1986) was also considered in
Fagin and Halpern (1989), by extending this Nilsson structure N = (2Φ,P(2Φ), µ) into
a more general probability structure M = (2Φ,P(2Φ), µ, π), where π associates with
each s ∈ S = 2Φ the truth assignment π(s) : Φ→ 2 and we say that p ∈ Φ is true at
s if π(s)(p) = 1, false at s otherwise. This mapping π(s) can be uniquely extended to
the truth assignment on all formulae in L(Φ), by taking the usual rules of propositional
logic (the unique homomorphic extension to all formulae), and we can associate to each
propositional formula ϕ ∈ L(Φ), the set ϕM consisting of all states s ∈ S, where ϕ is
true (so that ϕM = {s ∈ S | π(s)(ϕ) = 1}). Fagin and Halpern (1989) has demonstrated
that, for each Nilsson structure N , there is an equivalent measurable probability structure
M , and vice versa.

However, unlike Nilsson, Fagin and Halpern did not define a many-valued
propositional logic, but defined a kind of 2-valued logic based on probabilistic
constraints. The weight or probability of ϕ in Nilsson structure N is denoted by
wN (ϕ) (corresponding to the value µ(ϕM)) so that the basic probabilistic 2-valued
constraint can be defined by expressions c1 ≤ wN (ϕ) and wN (ϕ) ≤ c2 for given
constants c1, c2 ∈ [0, 1]. Fagin and Halpern expected their logic to be used for reasoning
about probabilities.

However, again, from the logic point of view, Fagin and Halpern did not define a
unique logic but defined two different logics: one for the classical propositional logic
L(ϕ) and a new one for 2-valued probabilistic constraints obtained from the basic
probabilistic formulae above and Boolean operators ∧ and ¬. Fagin and Halpern did
not consider the introduced symbol wN as a formal functional symbol for the mapping
wN : L(Φ)→ [0, 1] such that for any propositional formula ϕ ∈ L(Φ), wN (ϕ) = µ({s ∈
S | π(s)(ϕ) = 1}). Instead of this intuitive meaning for wN , they considered each
expression wN (ϕ) as a particular probabilistic term; more precisely, as a structured
probabilistic variable over the domain of values in [0, 1]. A multitude of different
probabilistic programming languages exist today. Each of these languages employs
its own probabilistic primitives, and comes with a particular syntax, semantics, and
inference procedure (Baral et al., 2009; Bellodj and Riguzzi, 2013; Raedt and Kimmig,
2015). Due to this, it is hard to understand the underlying programming concepts and
appreciate the differences between different languages.

82 Z. Majkić and B. Prasad

It seams that such a dichotomy and difficulty to have a unique 2-valued probabilistic
logic, both for the original propositional formulae in L(Φ) and for the probabilistic
constraints, is based on the fact that if we consider wN as a function with one argument
then it has to be formally represented as a binary predicate wN (ϕ, a) (for the graph
of this function) where the first argument is a formula and the second argument is its
resulting probability value. Consequently, a constraint “the probability of ϕ is less or
equal to c”, has to be formally expressed by the logic formula wN (ϕ, a)∧ ≤ (a, c) (here
we use the symbol ≤ as a built-in rigid binary predicate where ≤ (a, c) is equivalent
to a ≤ c), which is a second-order syntax because ϕ is a logic formula in such a
unified logic language. That is, the problem of obtaining the unique logical framework
for probabilistic logic comes out with the necessity of a reification feature of this
logic language, similar to the case of the intensional semantics for RDF data structures
(Majkić, 2008).

Consequently, we need a logic which is able to deal directly with reification of
logic formulae, and this is the starting point of this work. In fact, as we will see, such
an unified logical framework for the probabilistic theory can be achieved by a kind
of predicate intensional logics with intensional abstracts that transforms a propositional
formulae ϕ ∈ L(Φ) into an abstracted term, denoted by lϕm. By this approach, the
expression wN (lϕm, a)∧ ≤ (a, c) remains to be an ordinary first-order formula. In
fact, if lϕm is translated into non-sentence ‘that ϕ’ then the first-order formula above
corresponds to the sentence “the probability that ϕ is true is less than or equal to c”.

The main motivation for the introduction of the intensionality in the
probabilistic-theory of the propositional logic is based on the desire to have the full
logical embedding of the probability into the FOL, with a clear difference from the
classic concept of truth of the logic formulae and the concept of their probabilities. In
this way, we are able to replace the ad-hoc syntax and semantics, used in the current
practice for probabilistic logic programs (Ng and Subrahmanian, 1992; Dekhtyar and
and Dekhtyar, 2004; Udrea et al., 2006; Majkić, 2007) and probabilistic deduction
(Majkić, 2009), by the standard syntax and semantics used for the FOL where the
probabilistic-theory properties are expressed simply by the particular constraints on their
interpretations and models.

The rest of the paper is organized as follows:
In Section 2, we introduce the intensional FOL and its intensional algebra. We

define its two-step intensional semantics as a conservative extension of the Tarski’s
FOL semantics and its Kripke models. In Section 3, we define an embedding of the
probability theory, both with reasoning about probabilities, into an intensional FOL with
intensional abstraction. Then we show that the probabilities of propositional formulae
correspond to the computation of their probabilities in Nilsson’s structures, that is, this
intensional FOL is sound and complete w.r.t. the measurable probability structures.
Finally, in Section 4, we apply the theoretical results, obtained in previous two sections,
to the probabilistic logic programming.

Intensional FOL for reasoning about probabilities 83

2 Intensional FOL language with intensional abstraction

Intensional entities are concepts such as propositions and properties. What make them
‘intensional’ is that they violate the principle of extensionality; the principle that
extensional equivalence implies identity. All (or most) of these intensional entities have
been classified at one time or another as kinds of Universals (Bealer, 1993).

We consider a non empty domain D = D−1

∪
DI , where a subdomain D−1 is

made up of particulars (extensional entities), and the rest DI = D0

∪
D1...

∪
Dn... is

made up of universals (D0 for propositions for the 0-ary concepts and Dn, n ≥ 1, for
n-ary concepts).

The fundamental entities are intensional abstracts or so called, ‘that’-clauses. We
assume that they are singular terms; intensional expressions like ‘believe’, ‘mean’,
‘assert’, ‘know’, are standard two-place predicates that take ‘that’-clauses as arguments.
Expressions like ‘is necessary’, ‘is true’, and ‘is possible’ are one-place predicates that
take ‘that’-clauses as arguments. For example, in the intensional sentence “it is necessary
that ϕ”, where ϕ is a proposition, the ‘that ϕ’ is denoted by the lϕm, where lm is
the intensional abstraction operator which transforms a logic formula into a term. Or,
for example, ‘x believes that ϕ’ is given by formula p2i (x,lϕm) (p2i is binary ‘believe’
predicate).

In this research, we present an intensional FOL with slightly different intensional
abstraction than was originally presented in Bealer (1979):

Definition 1: The syntax of the First-order Logic language with intensional abstraction
lm, denoted by L, is as follows:
Logic operators (∧,¬,∃); Predicate letters in P (functional letters are considered as
particular case of predicate letters); Variables x, y, z, .. in V; Abstraction l m, and
punctuation symbols (comma, parenthesis). With the following simultaneous inductive
definition of term and formula:

1 All variables and constants (0-ary functional letters in P) are terms.

2 If t1, ..., tk are terms, then pki (t1, ..., tk) is a formula (pki ∈ P is a k-ary predicate
letter).

3 If ϕ and ψ are formulae, then (ϕ ∧ ψ), ¬ϕ, and (∃x)ϕ are formulae.

4 If ϕ(x) is a formula (virtual predicate) with a list of free variables in
x = (x1, ..., xn) (with ordering from-left-to-right of their appearance in ϕ), and α
is its sublist of distinct variables, then lϕmβ

α is a term, where β is the remaining
list of free variables preserving ordering in x as well.

The externally quantifiable variables are the free variables not in α. When n = 0, l ϕm
is a term which denotes a proposition, for n ≥ 1 it denotes a n-ary concept.

84 Z. Majkić and B. Prasad

An occurrence of a variable xi in a formula (or a term) is bound (free) iff it lies
(does not lie) within a formula of the form (∃xi)ϕ (or a term of the form lϕmβ

α with
xi ∈ α). A variable is free (bound) in a formula (or term) iff it has (does not have) a
free occurrence in that formula (or term).

A sentence is a formula having no free variables. The binary predicate letter p21 for
identity is singled out as a distinguished logical predicate and formulae of the form
p21(t1, t2) are to be rewritten in the form t1

.
= t2. We denote the binary relation, obtained

by standard Tarski’s interpretation of this predicate p21, by R=. The logic operators
∀,∨,⇒ are defined in terms of (∧,¬, ∃) in the usual way.

The intensional interpretation of this intensional FOL is a mapping between the
set L of formulae of the logic language and intensional entities in D, I : L → D is a
kind of ‘conceptualization’, such that an open-sentence (virtual predicate) ϕ(x1, ..., xk)
with a tuple of all free variables (x1, ..., xk) is mapped into a k-ary concept, that is, an
intensional entity u = I(ϕ(x1, ..., xk)) ∈ Dk, and (closed) sentence ψ into a proposition
(i.e., logic concept) v = I(ψ) ∈ D0 with I(⊤) = Truth ∈ D0 for the FOL tautology ⊤.
If a language constant c is a proper name then it is mapped to a particular a = I(c) ∈
D−1, otherwise it is mapped to a corresponding concept in D.

An assignment g : V → D for variables in V is applied only to free variables in
terms and formulae. Such an assignment g ∈ DV can be recursively and uniquely
extended to the assignment g∗ : T → D, where T denotes the set of all terms (here I
is an intensional interpretation of this FOL, as explained next), by:

1 g∗(t) = g(x) ∈ D if the term t is a variable x ∈ V .

2 g∗(t) = I(c) ∈ D if the term t is a constant c ∈ P .

3 if t is an abstracted term lϕmβ
α, then g∗(lϕmβ

α) = I(ϕ[β/g(β)]) ∈ Dk, k = |α|
(i.e., the number of variables in α), where
g(β) = g(y1, .., ym) = (g(y1), ..., g(ym)) and [β/g(β)] is a uniform replacement
of each i-th variable in the list β with the i-th constant in the list g(β). Notice
that α is the list of all free variables in the formula ϕ[β/g(β)].

We denote by t/g (or ϕ/g) the ground term (or formula) without free variables and
obtained by assignment g from a term t (or a formula ϕ), and by ϕ[x/t] the formula
obtained by uniformly replacing x by a term t in ϕ.

The distinction between intensions and extensions is important especially because
we are now able to have an equational theory over intensional entities (as lϕm which
are the predicates or functions ‘names’), that is separate from the extensional equality
of relations and functions. An extensionalization function h assigns, to the intensional
elements of D, an appropriate extension as follows: for each proposition u ∈ D0, h(u) ∈
{f, t} ⊆ P(D−1) is its extension (true or false value); for each n-ary concept u ∈ Dn,
h(u) is a subset of Dn (n-th Cartesian product of D) and in the case of particulars u ∈
D−1, h(u) = u. The sets f and t are empty set {} and the set {<>} respectively (with
the empty tuple <>∈ D−1 i.e. the unique tuple of 0-ary relation) which may be thought
of as falsity and truth respectively, as those used in the Codd’s relational-database
algebra Codd (1970), while Truth ∈ D0 is the concept (intension) of the tautology.

We define that D0 = {<>}, hence {f, t} = P(D0). Thus we have:

Intensional FOL for reasoning about probabilities 85

h = h−1 +
∑
i≥0

hi :
∑
i≥−1

Di −→ D−1 +
∑
i≥0

P(Di)

where h−1 = id : D−1 → D−1 is identity, h0 : D0 → {f, t} assigns truth values in
{f, t} to all propositions, and hi : Di → P(Di), for i ≥ 1, assigns extension to all
concepts, where P is the powerset operator. Thus, intensions can be seen as names
of abstract or concrete entities, while extensions correspond to various rules that these
entities play in different worlds.
Remark: (Tarski’s constraint) This semantics has to preserve Tarski’s semantics of the
FOL, that is, for any formula ϕ ∈ L with the tuple of free variables (x1, ..., xk), for
any assignment g ∈ DV , and for every h ∈ E the following should be satisfied:

(T) h(I(ϕ/g)) = t iff (g(x1), ..., g(xk)) ∈ h(I(ϕ)). �

Thus, intensional FOL has the simple Tarski first-order semantics, with a decidable
unification problem, but we also need the actual world mapping which maps any
intensional entity to its actual world extension. Next we identify a possible world
by a particular mapping which assigns to intensional entities their extensions in such
possible world. That is a direct bridge between intensional FOL and possible worlds
representation (Lewis, 1986; Stalnaker, 1984; Montague, 1970, 1973, 1974; Majkić,
2011), where intension of a proposition is a function from possible worlds W to
truth-values, and properties and functions fromW to sets of possible (usually not-actual)
objects. Here E denotes the set of possible extensionalization functions that satisfy the
constraint (T); they can be considered as possible worlds [as in Montague’s intensional
semantics for natural language (Montague, 1970, 1974)], as demonstrated in Majkić
(2009, 2008), given by the bijection is:

W ≃ E .

Now we are able to formally define this intensional semantics Majkić (2011):

Definition 2 Two-step intensional semantics: Let R =
∪

k∈N P(Dk) =
∑

k∈N P(Dk) be
the set of all k-ary relations, where k ∈ N = {0, 1, 2, ...}. Notice that {f, t} = P(D0) ∈
R, that is, the truth values are extensions in R. The intensional semantics of the logic
language with the set of formulae L can be represented by the mapping

L −→I D =⇒w∈W R

where −→I is a fixed intensional interpretation I : L → D and =⇒w∈W is the set
of all extensionalization functions h = is(w) : D → R in E , where is :W → E is the
mapping from the set of possible worlds to the set of extensionalization functions.
We define the mapping In : Lop → RW , where Lop is the subset of formulae with free
variables (virtual predicates), such that for any virtual predicate ϕ(x1, ..., xk) ∈ Lop the
mapping In(ϕ(x1, ..., xk)) :W → R is the Montague’s meaning (i.e., intension) of this
virtual predicate (Lewis, 1986; Stalnaker, 1984; Montague, 1970, 1973, 1974), that is,
the mapping which returns with the extension of this (virtual) predicate in every possible
world in W .

86 Z. Majkić and B. Prasad

We adopted this two-step intensional semantics, instead of well known Montague’s
semantics (which lies in the construction of a compositional and recursive semantics
that covers both intension and extension), because it has several weaknesses.
Example 1: Let us consider the following two past participles: ‘bought’ and ’sold’(with
unary predicates p11(x), ‘x has been bought’, and p12(x), ’x has been sold’). These two
different concepts in the Montague’s semantics would have not only the same extension
but also have the same intension, based on the fact that their extensions are identical
in every possible world. With the two-steps formalism, we can avoid this problem by
assigning two different concepts (meanings) u = I(p11(x)) and v = I(p12(x)) in ∈ D1.
Notice that the same problem we have in the Montague’s semantics for two sentences
with different meanings, which bear the same truth value across all possible worlds: in
the Montague’s semantics, they will be forced to the same meaning.�

Another relevant question w.r.t. this two-step interpretations of an intensional
semantics is how the extensional identity relation .

= (binary predicate of the identity)
of the FOL is managed in it. Here this extensional identity relation is mapped into the
binary concept Id = I(

.
= (x, y)) ∈ D2, such that (∀w ∈ W)(is(w)(Id) = R=), where.

= (x, y) (i.e., p21(x, y)) denotes an atom of the FOL of the binary predicate for identity
in FOL, usually written by FOL formula x .

= y (here we prefer to distinguish this formal
symbol .

= ∈ P of the built-in identity binary predicate letter in the FOL from the
standard mathematical symbol ‘=’ used in all mathematical definitions in this paper).

Next, we use the function f<> : R→ R such that for any R ∈ R, f<>(R) = {<>}
if R ̸= ∅; ∅ otherwise. Let us define the following set of algebraic operators for relations
in R:

1 Binary operator ◃▹S : R×R→ R such that for any two relations R1, R2 ∈ R ,
the R1 ◃▹S R2 is equal to the relation obtained by natural join of these two
relations if S is a non empty set of pairs of joined columns of respective
relations (where the first argument in the pair is the column index of the relation
R1 while the second argument is the column index of the joined column of the
relation R2); ‘otherwise’ it is equal to the cartesian product R1 ×R2. For
example, the logic formula ϕ(xi, xj , xk, xl, xm) ∧ ψ(xl, yi, xj , yj) will be
traduced by the algebraic expression R1 ◃▹S R2 where R1 ∈ P(D5) and
R2 ∈ P(D4) are the extensions for a given Tarski’s interpretation of the virtual
predicates ϕ and ψ relatively, so that S = {(4, 1), (2, 3)} and the resulting relation
will have the following ordering of attributes: (xi, xj , xk, xl, xm, yi, yj).

2 Unary operator ∼: R→ R such that for any k-ary (with k ≥ 0) relation
R ∈ P(Dk) ⊂ R we have that ∼ (R) = Dk\R ∈ Dk, where ’\’ is the
subtraction of relations. For example, the logic formula ¬ϕ(xi, xj , xk, xl, xm) will
be traduced by the algebraic expression D5\R where R is the extensions for a
given Tarski’s interpretation of the virtual predicate ϕ.

3 Unary operator π−m : R→ R such that for any k-ary (with k ≥ 0) relation
R ∈ P(Dk) ⊂ R we have that π−m(R) is equal to the relation obtained by
elimination of the m-th column of the relation R if 1 ≤ m ≤ k and k ≥ 2; equal
to f<>(R) if m = k = 1; otherwise it is equal to R. For example, the logic
formula (∃xk)ϕ(xi, xj , xk, xl, xm) will be traduced by the algebraic expression
π−3(R) where R is the extensions for a given Tarski’s interpretation of the virtual

Intensional FOL for reasoning about probabilities 87

predicate ϕ and the resulting relation will have the following ordering of
attributes: (xi, xj , xl, xm).

Notice that the ordering of attributes of resulting relations corresponds to the method
used for generating the ordering of variables in the tuples of free variables adopted
for virtual predicates. Analogous to Boolean algebras, which are extensional models of
propositional logic, we introduce an intensional algebra for this intensional FOL:

Definition 3 : Intensional algebra for the intensional FOL in Definition 2 is a
structure Algint = (D, f, t, Id, T ruth, {conjS}S∈P(N2), neg, {existsn}n∈N), with
binary operations conjS : DI ×DI → DI , unary operation neg : DI → DI , unary
operations existsn : DI → DI such that for any extensionalization function h ∈ E ,
u ∈ Dk, v ∈ Dj , k, j ≥ 0

1 h(Id) = R= and h(Truth) = {<>}.

2 h(conjS(u, v)) = h(u) ◃▹S h(v), where ◃▹S is the natural join operation defined
above and conjS(u, v) ∈ Dm where m = k + j − |S| if for every pair (i1, i2) ∈ S
it holds that 1 ≤ i1 ≤ k, 1 ≤ i2 ≤ j (otherwise conjS(u, v) ∈ Dk+j).

3 h(neg(u)) = ∼ (h(u)) = Dk\(h(u)), where ∼ is the operation defined above
and neg(u) ∈ Dk.

4 h(existsn(u)) = π−n(h(u)), where π−n is the operation defined above and
existsn(u) ∈ Dk−1 if 1 ≤ n ≤ k (otherwise existsn is the identity function).

Notice that for u ∈ D0, h(neg(u)) = ∼ (h(u)) = D0\(h(u)) = {<>}\(h(u)) ∈
{f, t}.

We define a derived operation union : (P(Di)\∅)→ Di, i ≥ 0 such that, for
any B = {u1, ..., un} ∈ P(Di), we have that union({u1, ..., un}) =def u1 if n = 1;
neg(conjS(neg(u1), conjS(..., neg(un))...), where S = {(l, l) | 1 ≤ l ≤ i}, otherwise.
Then we obtain that for n ≥ 2:

h(union(B) = h(neg(conjS(neg(u1), conjS(..., neg(un))...)

= Di\((Di\h(u1) ◃▹S ... ◃▹S (Di\h(un))
= Di\((Di\h(u1)

∩
...

∩
(Di\h(un))

=
∪
{h(uj) | 1 ≤ j ≤ n} =

∪
{h(u) | u ∈ B}.

Once a method for specifying the interpretations of singular terms of L has been found
(by taking the particularity of abstracted terms into consideration), the Tarski-style
definitions of truth and validity for L may be given in the customary way. What is
being sought specifically is a method for characterizing the intensional interpretations
of singular terms of L in such a way that a given singular abstracted term lϕmβ

α

will denote an appropriate property, relation, or proposition, depending on the value of
m = |α|. Thus, we define the mapping of intensional abstracts (terms) into D differently
from one that was given in the version of Bealer (1982), as follows:

88 Z. Majkić and B. Prasad

Definition 4: An intensional interpretation I can be extended to abstracted terms as
follows: for any abstracted term lϕmβ

α we define that

I(lϕmβ
α) = union({I(ϕ[β/g(β)]) | g ∈ Dβ})

where β denotes the ‘set’ of elements in the list β, and the assignments in Dβ are
limited only to the variables in β.

Remark: Can we extend the interpretation also to (abstracted) terms, because in Tarski’s
interpretation of FOL we do not have any interpretation for terms, but only the
assignments for terms as we defined previously by the mapping g∗ : T → D? Yes
because the abstraction symbol l mβ

α can be considered as a kind of the unary built-in
functional symbol of intensional FOL so that we can apply the Tarskian interpretation to
this functional symbol into the fixed mapping I(l mβ

α) : L → D so that for any ϕ ∈ L
we have that I(lϕmβ

α) is equal to the application of this function to the value ϕ, that
is, to I(l mβ

α)(ϕ). In such an approach, we would also introduce the typed variable X
for the formulae in L so that the Tarskian assignment for this functional symbol with
variable X , with g(X) = ϕ ∈ L, can be given by:

g∗(l mβ
α (X)) = I(l mβ

α)(g(X)) = I(l mβ
α)(ϕ)

= <>∈ D−1

if α
∪
β is not equal to the set of free variables in ϕ:

= union({I(ϕ[β/g′(β)]) | g′ ∈ Dβ}) ∈ D|α|, otherwise. �

Notice that if β = ∅ is the empty list then I(lϕmβ
α) = I(ϕ). Consequently,

the denotation of lϕm is equal to the meaning of a proposition
ϕ, that is, I(lϕm) = I(ϕ) ∈ D0. In the case when ϕ is an atom
pmi (x1, .., xm) then I(lpmi (x1, .., xm)mx1,..,xm) = I(pmi (x1, .., xm)) ∈ Dm, while
I(lpmi (x1, .., xm)mx1,..,xm) = union({I(pmi (g(x1), ..., g(xm))) | g ∈ D{x1,..,xm}}) ∈
D0, with h(I(lpmi (x1, .., xm)mx1,..,xm)) = h(I((∃x1)...(∃xm)pmi (x1, .., xm))) ∈
{f, t}. For example, h(I(lp1i (x1) ∧ ¬p1i (x1)mx1)) = h(I((∃x1)(lp1i (x1) ∧
¬p1i (x1)mx1))) = f .

The interpretation of a more complex abstract lϕmβ
α is defined in terms of

the interpretations of the relevant syntactically simpler expressions, because the
interpretation of more complex formulae is defined in terms of the interpretation of
the relevant syntactically simpler formulae, based on the intensional algebra above.
For example, I(p1i (x) ∧ p1k(x)) = conj{(1,1)}(I(p

1
i (x)), I(p

1
k(x))), I(¬ϕ) = neg(I(ϕ)),

I(∃xi)ϕ(xi, xj , xi, xk) = exists3(I(ϕ)).
Consequently, based on the intensional algebra in Definition 2 and on intensional

interpretations of abstracted term in Definition 2, it holds that the interpretation of any
formula in L (and any abstracted term) will be reduced to an algebraic expression over
interpretation of primitive atoms in L. This obtained expression is finite for any finite
formula (or abstracted term), and represents the meaning of such finite formula (or
abstracted term).

The extension of abstracted terms satisfies the following property: For any abstracted
term lϕmβ

α with |α| ≥ 1 we have that h(I(lϕmβ
α)) = π−β(h(I(ϕ))), where

Intensional FOL for reasoning about probabilities 89

π−(y1,...,yk) = π−y1 ◦ ... ◦ π−y1 , ◦ is the sequential composition of functions), and π−∅
is an identity.

We can connect E with a possible-world semantics. Such correspondence is a natural
identification of intensional logics with modal Kripke based logics.

Definition 5 (Model): A model for intensional FOL with fixed intensional interpretation
I , which expresses the two-step intensional semantics in Definition 2, is the Kripke
structure Mint = (W,D, V), where W = {is−1(h) | h ∈ E}, a mapping V :W ×
P →

∪
n<ω{t, f}D

n

, with P a set of predicate symbols of the language, such
that for any world w = is−1(h) ∈ W, pni ∈ P , and (u1, ..., un) ∈ Dn, it holds that
V (w, pni)(u1, ..., un) = h(I(pni (u1, ..., un))). The satisfaction relation |=w,g for a given
w ∈ W and assignment g ∈ DV is defined as follows:

1 M |=w,g p
k
i (x1, ..., xk) iff V (w, pki)(g(x1), ..., g(xk)) = t,

2 M |=w,g φ ∧ ϕ iff M |=w,g φ and M |=w,g ϕ,

3 M |=w,g ¬φ iff notM |=w,g φ,

4 M |=w,g (∃x)ϕ iff

4.1 M |=w,g ϕ, if x is not a free variable in ϕ;

4.2 exists u ∈ D such that M |=w,g ϕ[x/u], if x is a free variable in ϕ.

It is easy to show that the satisfaction relation |= for this Kripke semantics in a world
w = is−1(h) is defined by, M |=w,g ϕ iff h(I(ϕ/g)) = t.

We can enrich this intensional FOL by another modal operator, as for example
the ‘necessity’ universal operator 2 with an accessibility relation R =W ×W ,
obtaining the S5 Kripke structure Mint = (W,R,D, V), in order to be able to define
the equivalences Majkić (2012) between the abstracted terms without free variables.

3 Embedding of probabilistic logic into intensional FOL

In order to reason about probabilities of the propositional formulae, we need a kind
of 2-valued meta-logic with reification features, thus, a kind of intensional FOL with
intensional abstraction presented previously. Consequently, the sentence “the probability
that A is less than or equal to c” is expressed by the first-order logic formula
wN (lϕm, a)∧ ≤ (a, c), where ≤ is the binary built-in predicate ‘is less than or equal’,
where the usual notation ‘a ≤ b’ is rewritten in this standard predicate-based way by
‘≤ (a, b)’, while ‘the probability that ϕ is equal to a’ is denoted by the ground atom
wN (lϕm, a) with the binary ‘functional’ predicate symbol wN (in intensional logic,
any n-ary function is represented by the n+ 1-ary predicate symbol with the first n
attributes used as arguments of this function and the last (n+ 1)-th attribute for the
resulting function’s value, analogously as in FOL with identity).

The basic intensional logic language LPR ⊆ L for probabilistic theory is composed
of propositions in L(Φ), with propositional symbols (0-ary predicate symbols) p0i =
pi ∈ Φ (with I(pi) ∈ D0), with the binary predicate p23 for the weight or probabilistic
function wN , with the binary built-in (with constant fixed extension in any ”world’
h ∈ E) predicate p22 for ≤ (the binary predicate = for identity is defined by a = b iff

90 Z. Majkić and B. Prasad

a ≤ b and b ≤ a), and with two built-in ternary predicates p31 and p32 and denoted by
⊕ and ⊙ for addition and multiplication operations + and · respectively as required
for a logic for reasoning about probabilities (Fagin et al., 1990). The 0-ary functional
symbols a, b, c, .. in this logic language will be used as numeric constants for denotation
of probabilities in [0, 1], i.e., with I(a) = a ∈ [0, 1] ⊂ D−1. Consequently, the ‘worlds’
(i.e., the extensionalization functions) will be reduced to the mappings

h = h−1 + h0 + h2 + h3.

Note that in intensional FOL, each n-ary functional symbol is represented by the
(n+1)-ary predicate letter, where the last attribute (of this predicate) is introduced
for the resulting values of such a function. For example, the first attribute of the
predicate letter wN will contain the intensional abstract of a propositional formula
in L(Φ), while the second place will contain the probabilistic value in the interval
of reals [0, 1] ⊂ D−1, so that the ground atom wN (lϕm, a) in LPR will have the
interpretation I(wN (lϕm, a)) ∈ D0. The atom wN (x, y), with variables x and y, will
satisfy the functional requirements, that is I(wN (x, y)) ∈ D2 with a binary relation
R = h(I(wN (x, y))) ∈ P(D0 × [0, 1]) ⊆ P(D2), such that for any (u, v) ∈ R there is
no v1 ̸= v such that (u, v1) ∈ R. Obviously, for this intensional logic, we have that
h(I(wN (lϕm, a))) = t iff (I(lϕm), I(a)) = (I(ϕ), a) ∈ R.

Analogously, for the ground atom ⊕(a, b, c), with a = I(a), b = I(b), c = I(c) ∈
D−1 real numbers, we have that I(⊕(a, b, c)) ∈ D0 such that for any ‘world’ h ∈
E we have that h(I(⊕(a, b, c))) = t iff a+ b = c (remember that for elements a =
I(a) ∈ D−1 we have that h(I(a)) = a). For addition of more than two elements in this
intensional logic, we will use intensional abstract, for example for the sum of three
elements we can use a ground formula ⊕(a, b, d) ∧ ⊕(d, c, e), such that it holds that
h(I(⊕(a, b, d) ∧ ⊕(d, b, c))) = conj(I(⊕(a, b, d)), I(⊕(d, c, e))) = t iff a+ b = d and
d+ c = e, that is, iff a+ b+ c = e. The fixed extensions of the two built-in ternary
predicates ⊕(x, y, z) and ⊙(x, y, z) are equal to:

R⊕ = h(I(⊕(x, y, z))) = {(u1, u2, u1 + u2) | u1, u2 ∈ D−1 are real numbers},

R⊙ = h(I(⊙(x, y, z))) = {(u1, u2, u1 · u2) | u1, u2 ∈ D−1 are real numbers}.

The built-in binary predicate ≤ satisfies the following requirements for its intensional
interpretation: I(≤ (x, y)) ∈ D2 such that for every h ∈ E it holds that its fixed
extension is a binary relation R≤ = h(I(≤ (x, y))) = {(u, v) | u, v ∈ D−1 are real
numbers and u ≤ v}, with the property that h(I(≤ (a1, a2))) = t iff (I(a1), I(a2)) =
(a1, a2) ∈ R≤.

Definition 6 : Intensional FOL LPR is a probabilistic logic with a probability structure
M = (2Φ,P(2Φ), µ, π) if its intentional interpretations satisfy the following property for
any propositional formula ϕ ∈ L(Φ) ⊆ LPR:

h(I(wN (lϕm, a))) = t iff I(a) =
∑

s∈2Φ & π(s)(ϕ)=1

µ({s}).

Let us show that the binary predicate wN is a functional built-in predicate, whose
extension is equal in every possible ‘world’ h ∈ E , and that the probability structure

Intensional FOL for reasoning about probabilities 91

can use E as the set of possible worlds in the place of Nilsson’s set 2Φ. That is,
we can replace Nilsson’s structure with the intensional probability structure MI =
(E ,P(E), µ, π).

Proposition 1: Intensional FOL LPR is a probabilistic logic with a probability
structure M = (2Φ,P(2Φ), µ, π) if wN is a built-in functional symbol such that its
fixed extension is equal to RwN = h(I(wN (x, y))) = {(I(ϕ), I(a)) | ϕ ∈ L(Φ) and
I(a) =

∑
h1∈E & h1(I(wN (lϕm,a)))=t µ({is−1(h1)})} where the mapping is : 2Φ → E

is a bijection, and is−1 its inverse.

Proof: Let us show that there is a bijection is : 2Φ → E between the sets 2Φ and
E . In fact, let v ∈ 2Φ be extended (in the unique standard homomorphic way) to
all propositional formulae by v : L(Φ)→ 2. This propositional valuation corresponds
to the intensional interpretation (I, h) obtained, for any sentence ϕ ∈ L(Φ), by
h(I(ϕ)) = is2(v(ϕ)), where is2 : 2→ {f, t} is a bijection of these two lattices such
that is2(0) = f, is2(1) = t. We have seen that all predicate symbols with arity
greater than 0 of our intensional probabilistic logic LPR are built-in predicates (that
do not depend on h ∈ E) so that for a fixed intensional interpretation I , any two
extensionalization functions h and h′ differ only on propositions in D0, so that we
obtain the bijective mapping is : v 7→ h such that v = is−1

2 ◦ h ◦ I , where ◦ denotes
the composition of functions. From Tarski’s constraint (T) of intensional algebra, we
have that for any ground atom wN (lϕm, a) it holds that I(wN (lϕm, a)) = t iff
(I(ϕ), I(a)) ∈ h(I(wN (x, y))). Thus, form Definition 3, we obtain that (I(ϕ), I(a)) ∈
h(I(wN (x, y))) iff I(a) =

∑
s∈2Φ & π(s)(ϕ)=1 µ({s}). Consequently, RwN

=
h(I(wN (x, y))) = {(I(ϕ), I(a)) | ϕ ∈ L(Φ) and I(a) =

∑
s∈2Φ & π(s)(ϕ)=1 µ({s})},

where I(wN (x, y)) ∈ D2, I(ϕ) ∈ D0 and I(a) ∈ [0, 1] ⊆ D−1. But from the bijection
is, instead of s ∈ 2Φ, we can take h1 = is(s) ∈ E . The condition π(s)(ϕ) = 1, which
means that ”ϕ is true in the state s”, can be equivalently replaced by ”ϕ is true in
the world h1 = is(s)”, and hence by condition h1(I(wN (lϕm, a))) = t. So, the
definition for the extension of the binary relation RwN for Nilsson’s probabilities of
propositional formulae, given in this proposition, is correct. This extension is constant
in any ‘possible world’ in E hence the binary functional-predicate wN is a built-in
predicate in this intensional FOL LPR. �

Consequently, the sentence “the probability that ϕ is equal to a”, expressed by the
ground atom wN (lϕm, a), is true iff h(I(wN (lϕm, a))) = t iff
(I(ϕ), a) ∈ h(I(wn(x, y)) = RwN .

Thus, for the most simple linear inequality, “the probability that ϕ is less than
or equal to c”, expressed by the formula ∃x(wN (lϕm, x)∧ ≤ (x, c)), is true iff
h(I(∃x(wN (lϕm, x)
∧ ≤ (x, c)))) = t iff (u, I(c)) ∈ R≤, where u ∈ [0, 1] ⊂ D−1 is determined by
(v, u) ∈ RwN

where v = I(ϕ) ∈ D0.
Analogous to the results obtained for a logic for reasoning about probabilities in

Fagin et al. (1990), we obtain the following property:

Theorem 1 : The intensional FOL LPR, with built-in binary predicate wN defined in
Proposition 3, built-in binary predicate ≤ and ternary built-in predicates ⊕ and ⊙, is
sound and complete with respect to the measurable probability structures.

92 Z. Majkić and B. Prasad

Proof: We will follow the demonstration analogous to the demonstration of Theorem
2.2 in Fagin et al. (1990) for the sound and complete axiomatization of the axiomatic
system AXMEAS for logic reasoning about probabilities. It is divided into three parts,
which deal respectively with propositional reasoning, reasoning about linear inequalities,
and reasoning about probabilities:

1 Propositional reasoning: set of all instances of propositional tautologies, with
unique inference rule Modus Ponens.

2 Reasoning about linear inequalities: set of all instances of valid formulae about
linear inequalities of the form a1 · x1 + ...+ ak · xk ≤ c, where a1, ..., ak and c
are integers with k ≥ 1, while x1, ..., xk are probabilistic variables.

3 Reasoning about probability function:

3.1 w(ϕ) ≥ 0 (nonnegativity)

3.2 w(true) = 1 (the probability of the event true is 1)

3.3 w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ) = w(ϕ) (additivity)

3.4 w(ϕ) = w(ψ) if ϕ ≡ ψ (distributivity).

It is easy to verify that, for any propositional axiom ϕ, we have that for all ‘worlds’
h ∈ E it holds that h(I(ϕ)) = t, so that it is true in the S5 Kripke model of the
intensional FOL given in Definition 2, because all algebraic operations in Algint in
Definition 2 are defined in order to satisfy standard propositional logic. Moreover, the
Modus Ponens rule is satisfied in every ‘world’ h ∈ E . Thus, the point 1 above is
satisfied by intensional logic LPR.
The definition of built-in predicates ⊙,⊕ and ≤ satisfy all linear inequalities, thus the
point 2 above.

The definition of binary predicate wN (x, y) is given in order to satisfy Nilsson’s
probability structure, thus all properties of probability funcion in Point 3 above are
satisfied by wN (x, y) built-in predicate in every ‘world’ h ∈ E . Consequently, the
soundness and completeness of the intensional logic LPR with respect to measurable
probability structures, based on the Theorem 2.2 in Fagin et al. (1990), is satisfied. �

For example, the satisfaction of the linear inequality a1 · x1 + a2 · x2 ≤ c, where x1
and x2 are the probabilities of the propositional formulae ϕ1 and ϕ2 respectively (here
the list of quantifications (∃x1)...(∃xk) is abbreviated by (∃x1, ..., xk)), expressed by
the following intensional formula

(∃x1, x2, y1, y2, y3)(wN (lϕ1m, x1) ∧ wN (lϕ2m, x2)
∧ ⊙ (a1, x1, y1)

∧ ⊙ (a2, x2, y2) ∧ ⊕(y1, y2, y3)
∧ ≤ (y3, c)), is true iff
(I(ϕ1), u1), (I(ϕ2), u2) ∈ RwN

, (I(a1), u1, v1),

(I(a2), u2, v2) ∈ R⊙, (v1, v2, v3)) ∈ R⊕and(v3, I(c)) ∈ R≤

where u1, u2, v1, .., v3 ∈ D−1 are real numbers.

Intensional FOL for reasoning about probabilities 93

Analogously, the satisfaction of any linear inequality a1 · x1 + ...+ ak · xk ≤ c,
where xi are the probabilities of the propositional formulae ϕi for i = 1, ..., k, k ≥ 2,
can be expressed by the logic formula

(∃x1, ..., xk, y1, ..., yk, z1, ..., zk)(wN (lϕ1m, x1) ∧ ...
∧wN (lϕkm, xk) ∧ ⊙(a1, x1, y1) ∧ ... ∧ ⊙(ak, xk, yk)

∧ ⊕ (0, y1, z1) ∧ ⊕(z1, y2, z2) ∧ ... ∧ ⊕(zk−1, yk, zk)

∧ ≤ (zk, c)).

Based on the Theorem 2.2 in Fagin et al. (1990) we can conclude that the problem
of deciding whether such an intensional formula in LPR is satisfiable in a measurable
probability structure of Nilsson is NP-complete.

4 Application to probabilistic logic programs

The semantics of the interval-based probabilistic logic programs, based on possible
worlds with the fixpoint semantics for such programs (Ng and Subrahmanian, 1992),
has been considered valid for more than 13 years. However, some years ago,
when one of the authors (Majkic) worked with Prof.V.S.Subrahmanian, director of
the UMIACS institute, he had the opportunity to consider the general problems of
(temporal) probabilistic databases (Majkić et al., 2007) and to analyse the semantics of
Subrahmanian’s interval-based probabilistic logic programs. Majkic then realised that,
unfortunately, the semantics was not correctly defined.

Because of that, Majkić (2005) formally developed the reduction of (temporal)
probabilistic databases into constraint logic programs (CLP). Consequently, it was
possible to apply the interval probabilistic satisfiability (interval PSAT) in order to find
the models of such interval-based probabilistic programs, as presented and compared
with other approaches in Majkić (2007). Moreover, in the complete revision presented
in this paper, it was demonstrated that the temporal-probabilistic logic programs can be
reduced to a particular case of the ordinary probabilistic logic programs, hence we can
apply intensional semantics only to this last general case of logic programs.

Next, we introduce the syntax of probabilistic logic programs. More about it can
be found in the original work in Ng and Subrahmanian (1992) and in its revision in
Majkić (2007). Let ground(P) denotes the set of all ground instances of rules of a
Probabilistic Logic Program P with a given domain for object variables, and let H
denotes the Herbrand base of this program P . Then, each ground instance of rules in
ground(P) has the following syntax:

A : µ0 ← ϕ1 : µ1 ∧ ... ∧ ϕm : µm (1)

where A ∈ H is a ground atom in a Herebrand base H; ϕi, i ≥ 1 are logic formulae
composed by ground atoms and standard logic connectives ∧ and ¬, while µi =
(bi, ci), i ≥ 0, where bi, ci ∈ [0, 1], are the lower and upper probability boundaries.

The expression ϕi : µi is a probabilistic-annotated (p-annotated) basic formula,
which is true if the probability xi of the ground formula ϕi is between bi and ci; false

94 Z. Majkić and B. Prasad

otherwise. Thus, this basic p-annotated formula is the particular case of the 2-valued
probabilistic formula:

(1 · xi ≥ ai) ∧ (1 · xi ≤ bi) (2)

composed by two linear inequalities.
Consequently, the standard logic embedding of annotated interval-based logic

programs can be easily obtained by the intensional logic LPR described in Section 3
where Φ is equal to the Herbrand base H of the annotated interval-based probabilistic
logic program P .

Thus, based on the translation (2), the logic formula in intensional logic LPR

corresponds to basic annotated formula ϕi : µi of the annotated logic program
ground(P) is equal to the following first-order closed formulae with a variable xi:

∃xi(wN (lϕim, xi)∧ ≤ (bi, xi)∧ ≤ (xi, ci)).

Based on this translation, the rule (1) of the annotated logic program ground(P) can
be replaced by the following rule of an intensional probabilistic logic program:

∃x0(wN (lAm, x0)∧ ≤ (b0, x0)∧ ≤ (x0, c0)) ← ∃x1(wN (lϕ1m, x1)
∧ ≤ (b1, x1)∧ ≤ (x1, c1)) ∧ ... ∧ ∃xm(wN (lϕmm, xm)∧ ≤ (bm, xm)

∧ ≤ (xm, cm))

with the variables x0, x1, ..., xm.
In this way, we obtain a grounded intensional probabilistic logic program PPR,

which has both the syntax and semantics different from the original annotated
probabilistic logic program ground(P).

As an alternative to this full intensional embedding of the annotated logic programs
into the first-order intensional logic, we can use a partial embedding by preserving the
old ad hoc annotated syntax of the probabilistic program ground(P), by extending the
standard predicate-based syntax of the intensional FOL logic with annotated formulae,
and by defining only the new intensional interpretation I for these annotated formulae
as follows:

I(ϕi : µi) = I((∃x)(wN (lϕim, x)) ∧ (≤ (bi, x))∧ ≤ (x, ci)))

= exist(conj{(1,1)}(I(wN (lϕim, x)), conj{(1,1)}(I(≤ (bi, x)),

I(≤ (x, ci)))))

where I(wN (lϕim, x)), I(≤ (bi, x)), I(≤ (x, ci)) ∈ D1. So that h(I(ϕi : µi)) = t iff
h(exist(u1)) = t,

where u1 = conj{(1,1)}(I(wN (lϕim, x)), conj{(1,1)}(I(≤ (bi, x)), I(≤ (x, ci)))) ∈
D1, iff ∃u(u ∈ h(u1)) iff (I(bi), u), (u, I(ci)) ∈ R≤, where u ∈ [0, 1] ⊂ D−1 is
a particular assignment for a variable x determined by (v, u) ∈ RwN where v = I(ϕi).

Notice that, from the fact that u1 ∈ D1

h(exist(u1))

= f<>(h(I(wN (lϕim, x)) ◃▹{(1,1)} (h(I(≤ (bi, x))) ◃▹{(1,1)} h(I(≤ (x, ci))))

= f<>(h(I(wN (lϕim, x))
∩
h(I(≤ (bi, x)))

∩
h(I(≤ (x, ci)))

Intensional FOL for reasoning about probabilities 95

where f<>(R) = f if R = ∅; t otherwise.
The advantage of this second partial embedding is that we can preserve the old

syntax for (temporal) probabilistic logic programs (Ng and Subrahmanian, 1992; Majkić,
2007) and are also providing to them the standard intensional FOL semantics instead of
having the current ad-hoc semantics for such kind of logic programs.

5 Conclusions

The logic for reasoning about probabilities can be embedded into an intensional FOL
that remains to be 2-valued logic, both for propositional formulae in L(Φ) and predicate
formulae for probability constraints, based on the binary built-in predicate ≤ and binary
predicate wN used for the probability function, where the basic propositional letters in
Φ are formally considered as nullary predicate symbols.

The intensional FOL for reasoning about probabilities is obtained by a particular
fusion of the intensional algebra (analogous to Bealer’s approach) and Montague’s
possible-worlds modal logic for the semantics of the natural language. In this paper, we
enriched such a logic framework by a number of built-in binary and ternary predicates,
which can be used to define the basic set of probability inequalities and to render the
probability weight function wN an explicit object in this logic language. We conclude
that this intensional FOL logic with intensional abstraction is a good candidate language
for the specification of probabilistic logic programs, and we applied two different
approaches for this: the first one is obtained by the translation of the annotated syntax
of current logic programs into this intensional FOL; the second one, instead, modifies
only the semantics of these logic programs by preserving their current ad-hoc annotated
syntax.

References
Baral, C., Gelfond, M. and Rushton, J.N. (2009) ‘Probabilistic reasoning with answer sets’,

Theory and Practice of Logic Programming, Vol. 9, No. 1, pp.57–144.
Bealer, G. (1979) ‘Theories of properties, relations, and propositions’, The Journal of Philosophy,

Vol. 76, No. 11, pp.634–648.
Bealer, G. (1982) Quality and Concept, Oxford University Press, USA.
Bealer, G. (1993) ‘Universals’, The Journal of Philosophy, Vol. 90, No. 1, pp.5–32.
Bellodj, E. and Riguzzi, F. (2013) ‘Expectation maximization over bynary decision dyagrams

for probabilistic logic programs’, Intell. Data Anal., Vol. 17, No. 2, pp.343–363.
Codd, E.F. (1970) ‘A relational model of data for large shared data banks’, Communications of

the ACM (Association for Computing Machinery), Vol. 13, No. 6, pp.377–387.
Dekhtyar, A. and Dekhtyar, M.I. (2004) ‘Possible worlds semantics for probabilistic logic

programs’, ICLP 2004, 2004, pp.137–148.
Fagin, R. and Halpern, J.Y. (1989) ‘Uncertainty, belief, and probability’, IJCAI, Vol. 89,

pp.1161–1167.
Fagin, R., Halpern, J. and Megiddo, N. (1990) ‘A logic for reasoning about probabilities’,

Information and Computation, Vol. 87, Nos. 1–2, pp.78–128.
Feller, W. (1957) An Introduction to Probability Theory and its Applications, Vol. 1, 2nd ed.,

Wiley, New York.
Halmos, P. (1950) ‘Measure theory’, Van Nostrand.

96 Z. Majkić and B. Prasad

Kolmogorov, A.N. (1986) Selected Works of A.N.Kolmogorov: Vol.2 Probability Theory and
Mathematical Statistics, A.N. Shiryayev (Ed.), Nauka, Moscow.

Lewis, D.K. (1986) On the Plurality of Worlds, Blackwell, Oxford.
Majkić, Z. (2005) ‘Constraint logic programming and logic modality for event’s valid-time

approximation’, 2nd Indian International Conference on Artificial Intelligence (IICAI-05),
Pune, India, 20–22 December.

Majkić, Z. (2007) ‘Temporal Probabilistic logic programs: State and revision’, International
Conference in Artificial Intelligence and Pattern Recognition (AIPR-07), Orlando, FL, USA,
9–12 July.

Majkić, Z. (2008) ‘Intensional semantics for RDF data structures’, 12th International Database
Engineering & Applications Systems (IDEAS08), Coimbra, Portugal, 10–13 September.

Majkić, Z. (2009) ‘Intensional first-order logic for P2P database systems’, Journal of Data
Semantics (JoDS XII), LNCS 5480, Springer-Verlag Berlin Heidelberg, pp.131–152.

Majkić, Z. (2009) ‘Probabilistic deduction and pattern recognition of complex events’,
International Conference on Information Security and Privacy (ISP-09), Orlando FL, USA,
13–16 July.

Majkić, Z. (2011) First-order Logic: Modality and Intensionality, arXiv: 1103.0680v1 [cs.LO],
3 March, pp.1–33.

Majkić, Z. (2012) ‘Conservative intensional extension of Tarski’s semantics’, Advances in
Artificial Intelligence, Hindawi Publishing Corporation, ISSN: 16870-7470, 23 October,
pp.1–17.

Majkić, Z., Udrea, O. and Subrahmanian, V.S. (2007) ‘Aggregates in generalized temporally
indeterminate databases’, Int. Conference on Scalable Uncertainty Management (SUM
2007), in LNCS 4772, Washington DC, USA, 10–12 October, pp.171–186.

Montague, R. (1970) ‘Universal grammar’, Theoria, Vol. 36, pp.373–398.
Montague, R. (1973) ‘The proper treatment of quantification in ordinary English’, in Hintikka,

J. et al. (Eds.):Approaches to Natural Language, pp.221–242, Reidel, Dordrecht.
Montague, R. (1974) Formal Philosophy, selected papers of Richard Montague, in Thomason,

R. (Ed.), pp.108–221, Yale University Press, New Haven, London.
Nilsson, N.J. (1986) ‘Probabilistic logic’, Artif. Intelligence, Vol. 28, No. 1, pp.71–87.
Ng, R.T. and Subrahmanian, V.S. (1992) ‘Probabilistic logic programming’, Information and

Computation, Vol. 101, No. 2, pp.150–201.
Raedt, L. and Kimmig, A. (2015) ‘Probabilistic (logic) programming concepts’, in Machine

Learning, Vol. 100, No. 1, pp.5–47.
Stalnaker, R. (1984) Inquiry, MIT Press, Cambridge, MA.
Udrea, O., Subrahmanian, V.S. and Majkić, Z. (2006) ’Probabilistic RDF’, IEEE Conference on

Information Reuse and Integration (IEEE IRI 2006), 16–18 September, Waikoloa, Hawaii,
USA.

