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1 Introduction

Most of the work in data integration or exchange and P2P framework, particularly for
the integrity constraints, in order to define right models for certain answers, is based on
a logical point of view in a ‘local’ mode (i.e., source-to-target database). However, a
general ‘global’ problem that deals with composition of complex partial mappings that
involve a number of databases has not been given the right attention in these works.

The current research is an attempt to provide a right solution for the general
problem of complex database-mappings and for the high level algebra operators namely
separation and data federation, by preserving the traditional logical language for schema
database mappings.

A limited amount of research has been reported in the literature (Madhavan et al.,
2002; Alagić and Bernstein, 2002; Davidson et al., 1998; Melnik et al., 2003) that
addresses the general problem presented in the current research. The research presented
in Alagić and Bernstein (2002) uses a category theory and it is too restrictive because
its institutions can be applied only for inclusion mappings between databases.

A lot of research has been done on sketch-based denotational semantics for databases
(Lellahi and Spyratos, 1990; Rosebrugh and Wood, 1992; Diskin and Cadish, 1995;
Johnson et al., 2000). However, that research used the elements of an ER-scheme of
a database such as relations, attributes, etc. as the objects of a sketch category but not
the whole database as a single object. Hence, we need a framework of inter-databases
mappings. The research presented in Diskin (1997) has shown that to progress towards
more expressive sketches w.r.t. the original Ehresmann’s sketches for diagrams with
limits and coproducts, by eliminating non-database objects, for example, Cartesian
products of attributes or powerset objects, we need more expressive arrows for sketch
categories [i.e., diagram predicates in Diskin (1997) that are analogous to the approach
of Makkai in Makkai (1994)]. As we progress towards a more abstract vision in which
objects are the whole databases, following the approach of Makkai, we obtain more
complex arrows in this new basic category DB for databases in which objects are just the
database instances (each object is a set of relations that compose this database instance).
Such arrows are not just simple functions as in the case of base Set category but
complex trees (i.e., operads) of view-based mappings. In this way, while Ehresmann’s
approach prefers to deal with a few fixed diagram properties [commutativity and
(co)limitness], we enjoy the possibility of setting a full relational-algebra signature of
diagram properties.

The current research is an attempt to provide a proper solution for this problem while
preserving the traditional common logical language for the schema database mapping
definitions.

The instance level base database category DB has been introduced for the first time
in Majkić (2003a) and it was also used in Majkić (2003b). While general information
about categories can be found in classic text books such as Mac Lane (1971), more
information about the database category DB with set of its objects ObDB and set of
its morphisms MorDB is available in Majkić (2008). The current research emphasises
some of the basic properties of this DB category, in order to make the presentation more
self-contained.

Every object, denoted by A,B,C,.. of this category is a database instance and it is
composed of a set of n-ary relations ai ∈ A, i = 1, 2, ... and these relations are called
‘elements of A’.
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We consider the views as a universal property for databases. Views are the possible
observations of the information contained in an instance-database and we may use
them to establish an equivalence relation between the databases. The power-view
operator T , with the domain and codomain equal to the set of all database instances,
has been defined such that for any object (database) A the object TA denotes a
database composed of the set of all views of A (Majkić, 2003a). The object TA,
for a given database instance A, corresponds to the quotient-term algebra LA/≈, in
which the carrier is a set of equivalence classes of closed terms of a well defined
formulae of a relational algebra which is ‘constructed’ by the following: ΣR-constructors
(i.e., relational operators select, project, join and union, in SPRJU algebra) and symbols
(attributes of relations) of a database instance A, and constants of attribute-domains.

Different properties of the base DB category were considered in the literature
(Majkić, 2009a, 2009b, 2011a, 2011b; Majkić and Prasad, 2010), where the basic
power-view operator T is extended to the endofunctor T : DB→ DB.

The connection between a logical (schema) level and computational category DB is
based on the interpretation functors. Thus, each rule-based conjunctive query at schema
level over a database A is translated (by an interpretation functor) in a morphism
in DB, from an instance-database A (a model of the database schema A) to the
instance-database TA composed by all views of A.

1.1 Basic database concepts

The database mappings, for a given logical language [for default we assume the
First-Order Language (FOL)], defined usually at a schema level (π1 and π2 denote first
and second projections,

⊎
denotes disjoint union, and N represents the set of natural

numbers), are as follows:

• A database schema is a pair A = (SA,ΣA) where SA = π1(A) is a countable set
of relation symbols r ∈ R, ar : R→ N , with finite arity (finite list of attributes
x =< x1, ..., xn >,n = ar(r) ≥ 1), disjoint from a countable infinite set att of
attributes (for any single attribute x ∈ att, the domain of x is a non-empty subset
dom(x), of a countable set of individual symbols dom, disjoint from att), such
that for any r ∈ R, the sort of R is a finite sequence of elements of att.
ΣA = π2(A) denotes a set of closed formulas (without free variables) called
integrity constraints of the sorted First-Order Language (FOL) with sorts att,
constant symbols dom, relational symbols in SA, and no function symbols.

We denote the set of all database schemas for a given (also infinite) set R by S.

We denote the empty database schema (where π1(A∅) and π2(A∅) are empty
sets) by A∅. A finite database schema A is composed of a finite set SA, so that
the set of all attributes of such a database is finite.

• We consider a rule-based conjunctive query over a database schema A as an
expression q(x)←− R1(u1), ..., Rn(un), where n ≥ 0, Ri are either the relation
names (at least one) in A or the built-in predicates (ex. ≤,=, etc..), q is a relation
name not in A and ui are free tuples (i.e., may use either variables or constants).
Recall that if v = (v1, .., vm) then R(v) is a shorthand for R(v1, .., vm). Finally,
each variable occurring in x must also occur at least once in u1, ..., un.
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Rule-based conjunctive queries (called rules) are composed of a subexpression
R1(u1), ...., Rn(un) that is the body and q(x) that is the head of this rule. If we
can find values for the variables of the rule, such that the body is logically
satisfied, then we can deduce the head-fact. This concept is captured by a notion
of ‘valuation’. In the rest of this paper, a deduced head-fact is called ‘a resulting
view of a query q(x) defined over a database A’, and it is denoted by ∥q(x)∥.
Recall that the conjunctive queries are monotonic and satisfiable and the Y es/No
conjunctive queries are the rules with an empty head.

• We consider that a mapping between two database schemas A and B is expressed
by an union of ‘conjunctive queries with the same head’. Such mappings are
called ‘view-based mappings’ and can be defined by the set
M = {qAi(xi)⇒ qBi(xi)|1 ≤ i ≤ n}, where ⇒ is the logical implication
between these conjunctive queries qAi(xi) and qAi(xi), over the databases A and
B respectively.

We consider a view of an instance-database A an n-ary relation (set of tuples)
obtained by a ‘select-project-join + union’ (SPJRU) query q(x) (it is a term of
SPJRU algebra) over A. If this query is a finite term of this algebra then it is
called a ‘finitary view’. Notice that a finitary view can also have an infinite
number of tuples.

• An instance of a database A is given by A = (A, IA), where IA is an Tarski’s
FOL interpretation function that satisfies all integrity constraints in ΣA and maps
each relational symbol of SA (n-ary predicate in FOL) into an n-ary relation
ai ∈ A (also called ‘element of A’). Thus, a relational instance-database A is a
set of n-ary relations and they are managed by relational database systems
(RDBMSs).

Given two autonomous instance-databases A and B, we can make a federation of
them, i.e., their disjoint union A

⊎
B, in order to be able to compute the queries

with relations of both autonomous instance-databases.

A federated database system is a type of meta-database management system
(DBMS) which transparently integrates multiple autonomous database systems
into a single federated database. The constituent databases are interconnected via
a computer network, and may be geographically decentralised. Since the
constituent database systems remain autonomous, a federated database system is a
contrastable alternative to the (sometimes daunting) task of merging together
several disparate databases. A federated database, or virtual database, is the
fully-integrated, logical composite of all constituent databases in a federated
database system.

Sheth and Larson (1990) were among the first to define a federated database
system, as one which “define[s] the architecture and interconnect[s] databases that
minimise central authority yet support partial sharing and coordination among
database systems”. Among other surveys, McLeod and Heimbigner (1985) “define
a Federated Database as a collection of cooperating component systems which are
autonomous and are possibly heterogeneous” (wikipedia page
http://en.wikipedia.org/wiki/Federated-database-system).
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1.2 Database (DB) category

Based on an observational point of view for relational databases, we may introduce a
category DB (Majkić, 2008) for instance-databases and view-based mappings between
them, with the set of its objects ObDB and the set of its morphisms MorDB , such that:

1 Every object (denoted by A,B,C,...) of this category is an instance-database,
composed of a set of n-ary relations ai ∈ A, i = 1, 2, ..., also called ‘elements of
A’. We define a universal database instance Υ as the union of all database
instances, i.e., Υ = {ai|ai ∈ A,A ∈ ObDB}. Υ is the top object of this category.

Υ = TΥ because every view v ∈ TΥ is an instance-database as well, thus v ∈ Υ.
Vice versa, every element r ∈ Υ is a view of Υ as well, thus r ∈ TΥ.

Every object (instance-database) A has also the empty relation ⊥. The object
composed of only this empty relation is denoted by ⊥0 and hence
T⊥0 = ⊥0 = {⊥}.

Two objects A and B are isomorphic in DB, denoted by A ≃ B, if TA = TB.

For any instance-database A it holds that A ⊆ TA and A ≃ TA.

Any empty database (a database with only empty relations) is isomorphic to this
bottom object ⊥0.

2 Morphisms of this category are all possible mappings between instance-databases
based on views and are defined by formalism of operads in the rest of the paper.

In the rest of paper, the objects in DB (i.e., instance-databases) are simply called as
databases, when it is clear from the context. Each atomic mapping (morphism) in
DB between two databases is generally composed of three components: the first one
corresponds to conjunctive query qi over a source database that defines this view-based
mapping, the second (optional) wi ‘translates’ the obtained tuples from domain of the
source database (for example in Italian) into terms of domain of the target database
(for example in English), and the last component vi defines the contribution of this
mappings to the target relation, i.e., a kind of global-or-local-as-view (GLAV) mapping
(sound, complete or exact).

In the rest of this paper we consider a more simple case without the component
wi and we also introduce two functions ∂0 and ∂1 such that ∂0(qAi) = {ri1, ..., rik}
(the set of relations used in the query formula qAi(x)) and ∂1(qAi) = {ri},
with obtained view ri = ∥qAi(x)∥. Thus, we can formally introduce a theory for
view-mapings based on operads:

Definition 1: We define the following two types of basic mappings:

• logic-sentence mapping: For any sentence, i.e., a logic formula φi without free
variables over a Database schema A, we can define a schema mapping
φi : A −→ A∅. The unique instance-database of the empty shema A∅ is denoted
by ⊥0= {⊥}, where ⊥ denotes the empty relation. Consequently, for each
interpretation α, α∗(A∅) =⊥0. This kind of schema mappings are used for the



Theory of sketches for database mappings 37

integrity constraints over database schemas and for Yes/No queries, as specified in
Section 3.

• View-mapping: For any query (a logic formula with free variables) over a schema
A we can define a schema map qi : A −→ {ri}, where qi ∈ O(ri1, ..., rik, ri),
Q = (ri1, ..., rik) ⊆ A.

For a given α the corresponding view-map at instance level is qAi = {α(qi) and
q⊥} : A −→ TA, with ⊥∈ A = α∗(A) ⊆ TA), ∂0(q⊥) = ∂1(q⊥) = {⊥}. For
simplicity, in the rest of this paper, we drop the component q⊥ of a view-map
and assume implicitly such a component; thus, ∂0(qAi) = α∗(Q) ⊆ A and
∂1(qAi) = {α(ri)} ⊆ TA is a singleton with the unique element equal to view
obtained by a ‘select-project-join+union’ term q̂i.

Thus, we introduce an atomic morphism (mapping) between two databases as a set of
simple view-mappings as follows:

Definition 2: Atomic morphism: Every schema mapping fSch : A −→ B, based on a
set of query-mappings qi, for a finite natural number N is defined as

fSch , { vi · qi | qi ∈ O(ri1, ..., rik, r
′
i), vi ∈ O(r′i, ri),

{ri1, ..., rik} ⊆ A, ri ∈ B, 1 ≤ i ≤ N}.

Its corresponding complete morphism at instance database level is

f = α∗(fSch) , { qAi = α(vi) · α(qi) | vi · qi ∈ fSch} : A→ B,

where each α(qi) is a query computation, with obtained view α(r′i) ∈ TA for an
instance-database A = α∗(A) = {α(rk) | rk ∈ A} and B = α∗(B).

Let πqi be a projection function on relations, for all attributes in
∂1(α(qi)) = {α(r′′i )}. Then each α(vi) : α(r′i) −→ α(ri) is one tuple-mapping function,
used to distinguish sound and exact assumptions on the views, as follows:

1 Inclusion case, i.e., when α(r′i) ⊆ πqi(α(ri)). Then for any tuple t ∈ α(r′i) there
exists t1 ∈ α(ri) such that πqi({t1}) = t and α(vi)(t) = t1.

2 Exact case, i.e., special inclusion case when α(r′i) = πqi(α(ri)).

We define the extension of data transmitted from an instance-database A into B by the
component qAi as ∥qAi∥ , α(r′i).

Notice that the components α(vi) and α(qi) are not the morphisms in DB category:
only their functional composition is an atomic morphism. Each atomic morphism is a
complete morphism, that is, a set of view-mappings. Thus, each view-map qAi

: A −→
TA, which is an atomic morphism, is a complete morphism (the case when B = TA,
and α(vi) belongs to the ‘exact case’). We denote the set of all complete morphisms by
c-arrow.

Based on atomic morphisms (sets of view-mappings), which are complete
arrows (c-arrows), we obtain that their composition generates tree-structures. These
tree-structures can be incomplete (p-arrows) in the way that for a composed arrow
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h = g ◦ f : A→ C, of two atomic arrows f : A→ B and g : B → C, we can have
the situations where ∂0(f) ⊂ ∂0(h). The set of relations in ∂0(h)− ∂0(f) ⊂ ∂0(g) are
denominated ‘hidden elements’.

Definition 3: The following BNF defines the set MorDB of all morphisms in DB:

p− arrow := c− arrow | c− arrow ◦ c− arrow
(for any two c− arrows f : A −→ B and g : B −→ C )

morphism := p− arrow | c− arrow ◦ p− arrow
(for any p− arrowf : A −→ B and c− arrowg : B −→ C)

whereby the composition of two arrows, f (partial) and g (complete), we obtain the
following p-arrow (partial arrow) h = g ◦ f : A −→ C

h = g ◦ f =
∪

qBj
∈ g & ∂0(qBj

)
∩

∂1(f) ̸=∅

{qBj} ◦

◦
∪

qAi
∈ f & ∂1(qAi

)={v} & v∈ ∂0(qBj
)

{qAi(tree)}

= {qBj ◦ {qAi(tree) | ∂1(qAi) ⊆ ∂0(qBj )} | qBj ∈ g & ∂0(qBj )
∩
∂1(f) ̸= ∅}

= {qBj
(tree) | qBj

∈ g & ∂0(qBj
)
∩
∂1(f) ̸= ∅}

where qAi(tree) is the tree of the morphisms f below qAi .
We define the semantics of mappings by function BT :MorDB −→ ObDB which,

given any mapping morphism f : A −→ B, returns the set of views (‘information flux’)
which are really ‘transmitted’ from the source to the target object.

1 for atomic morphism,

f̃ = BT (f) , T{∥fi∥ | fi ∈ f}

2 let g : A→ B be a morphism with a flux g̃ and f : B → C an atomic morphism
with flux f̃ defined in point 1, then

f̃ ◦ g = BT (f ◦ g) , f̃
∩
g̃.

We introduce an equivalence relation over the morphisms as:

f ≈ g iff f̃ = g̃.

Notice that between any two databases A and B there is at least an ‘empty’ arrow
∅ : A→ B such that ∂0(∅) = ∂1(∅) = ∅̃ = {⊥} = ⊥0.

As demonstrated in Majkić (2003a) and Majkić (2008), the database category, DB,
has the following basic properties:
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1 Symmetry: a bijective correspondence between arrows and objects.

2 Duality: DB is equal to its dual DBOP , so that each limit is also colimit
[for example, product is also coproduct, pullback is also pushout, empty database
⊥0 is zero objet, (that is, both initial and terminal object), and so on].

3 It is a 2-category.

Generally, database mappings are not simply programs from values (relations) into
computations (views) but an equivalence of computations. Hence each mapping, from
any two databases A and B, is symmetric and gives a duality property to the category
DB. The denotational semantics of database mappings is given by morphisms of the
Kleisli category DBT which may be ‘internalised’ in DB category as ‘computations’
(Majkić and Prasad, 2010).

The product A×B of the databases A and B is equal to their coproduct A+B,
and the semantics for these product and coproduct operations specify that we can not
define a view by using relations of both databases, that is, these two databases have
independent DBMS for query evaluation. For example, the creation of an exact copy of
a database A in another DB server corresponds to the database A+A.

The duality property for products and coproducts are given by the following
commutative diagram:

A A

A+B

inA

?

∩

k - C
kOP

-

f
O
P

-
f

-

A×B

pA = inOP
A

66

B

inB

∪

6

g

-

B

pB = inOP
B

??

g O
P

-

The work presented in Majkić (2009a, 2009b) has considered some relationships of
DB and standard Set category and also introduced the categorial (functors) semantics
for two basic database operations, matching ⊗ and merging ⊕, such that for any two
databases A and B, A⊗B = TA

∩
TB and A⊕B = T (A

∪
B). That work has also

defined the algebraic database lattice and shown that DB is concrete, small and locally
finitely presentable (lfp) category. Moreover, that work has also:

a shown that DB is also V-category enriched over itself

b developed a metric space and a subobject classifier for this category

c demonstrated that DB is a weak monoidal topos.

In this paper we develop a functorial semantics for the database schema mapping
system, based on the theory of sketches.
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The rest of the paper is organised as follows: Section 2 presents the two basic operations,
separation and federation, for database schemas used in database mapping systems
and explains why the functorial semantics for database mappings needed a new base
category instead of common Set category. Section 3 presents a definition of the graph G
for a schema database mapping system and the definition of its sketch category Sch(G).
Based on this framework, functorial semantics for database mapping systems with the
base category DB is presented. Finally, Section 4 concludes this research.

2 Basic database schema operations: separation and federation

For the composition of complex database mapping graphs, it is important to distinguish
two basic compositions of two database schemas A and B with respect to DBMSs:

• In the composed schema, in order to make it impossible to write a query over the
composition with relations of both databases, the two database schemas should be
mutually separated by two independent DBMSs: it is a common case when two
databases are separated, and this symmetric binary separation-composition at
schema level are denoted by A † B, such that
πi(A † B) = πi(A)

⊎
πi(B), i = 1, 2.

• In the composed schema, when the two database schemas are connected into the
same DBMS (without any change of the two original database schemas): in this
case, we are able to use the queries over this composed schema with relations of
both databases for inter database mappings, and this symmetric binary
federation-composition at schema level is denoted by A

⊕
B, such that

πi(A
⊕
B) = πi(A)

⊎
πi(B), i = 1, 2.

The identity ‘=’ for database schemas is naturally defined as follows: for any two
A,B ∈ S (S is the set of schemas), A = B if πi(A) = πi(B), i = 1, 2. Notice that both
symmetric binary operators, † and

⊕
, for database schemas in S are associative with

identity element A∅ (nullary operator), so that the algebraic structures ((S,=), †,A∅)
and ((S,=),

⊕
,A∅) are the monoids.

Let us consider the mappings M : A † B → C and M : A
⊕
B → C. In the first

case, in any query mapping q(x)⇒ qC(x) ∈M, all relation symbols in the query q(x)
must be of database A or (mutually exclusive) of database B and this mapping can be
represented by the graph:

A B

C
�

M
B

M
A

-

where MA

⊎
MB =M, while in the case of mapping M : A

⊕
B → C such

a decomposition is not possible because we can have a query mapping
q(x)⇒ qC(x) ∈M with relation symbols from both databases A and B.
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If we introduce the mappings M1 = {rAi(xi)⇒ rAi(xi)|rAi ∈ A} and
M2 = {rBi(yi)⇒ rBi(yi)|rBi ∈ B} then we obtain the mapping graph,

A
M1

- A † B �
M2

B

C

M

?
�

M
B

M
A

-

that can be seen as a cocone diagram for schema database mappings.
Let us consider another dual example, a mapping M : C → A † B. In this case, in

any query mapping qC(x)⇒ q(x) ∈M, all relation symbols in the query q(x) must
be of database A or (mutually exclusive) of database B and this mapping can be
represented by the graph:

A B

C

M
B

-

�

M
A

whereMA

⊎
MB =M.

If we again introduce the mappings M1 = {rAi(xi)⇒ rAi(xi)|rAi ∈ A} and
M2 = {rBi(yi)⇒ rBi(yi)|rBi ∈ B} then we obtain dual mapping graph,

A � M1
A † B

M2 - B

C

M

6

M
B

-
�

M
A

that can be seen as a cone diagram for schema database mappings.
Based on these two simple examples, generally, the schema database mappings can

be expressed by using the small sketches. A detailed presentation of sketches for the
database mappings and their functorial semantics are provided in Section 3.

Sketches are developed by Ehresmann’s school, especially by Ehresmann (1966),
Lair (1996) and Barr and Wells (1988). Sketch is a category together with a
distinguished class of cones and cocones. A model of the sketch is a set-valued functor
turning all distinguished cones into limit cones, and all distinguished cocones into
colimit cocones, in the category Set of sets.

There is an elementary and basic connection between sketches and logic (Makkai
and Pare, 1989). Given any sketch, we can consider the underlying graph of the
sketch as a (many-sorted) language, and we can write down axioms in the L∞,∞-logic
(the infinitary FOL with finite quantifiers) over this language and hence the models of
the axioms become exactly the models of the sketch.

The category of models of a given sketch has models as objects and the arrows
that represent all natural transformations between the models as functors. A category is
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sketchable (esquissable) or accessible iff it is equivalent to the category of set-valued
models of a small sketch.

Recall that a graph G consists of a set of vertices denoted by G0 and a set of
arrows denoted by G1 together with the operators dom, cod : G1 → G0 which assigns
the source and target to each arrow. (Co)cones and diagrams are defined for graphs
exactly in the same way as they are for categories, but commutative co(cones) and
diagrams, of course, make no sense for graphs.

We define a sketch as a 4-tuple (G, u,D,C) where G is a graph, u : G0 → G1 is a
function which takes each vertex (node) A in G0 to an arrow from A to A, D is a class
of diagrams in G and C is a class of (co)cones in G. Each (c)cone in G goes (to)from
some vertex (from)to some diagram; that diagram need not be in D and, in fact, it is
necessary to allow diagrams which are not in D as bases of (co)cones.

Notice that, differently from the work dedicated to categorical semantics of
entity-relationship internal relational database models, where nodes of sketches are
single relations, here at higher level of abstraction, the nodes are whole databases.
Consequently, in such a framework, we do not use commutative database mapping
systems, so that D is an empty set. In fact, in a database mapping system, the (co)cone
diagrams mentioned above will never be used in practical representations of database
mapping systems. Instead of that, it will be alternatively used only for its selfconsistent
parts, as a first diagram above, or, equivalently, as a single arrowM : A † B → C.
However, for the introduced schema composition operator †, the above cone and cocone
diagrams have to be presented in C for our sketches.

Consequently we obtain the following fundamental lemma for the categorial
modelling of database mappings:

Lemma 1: The Set can not be used as the base category for the models of
database-mapping sketches.

Proof: Let E be a sketch for a given database sketch (G, u,D,C), where C is a set of
(co)cones of the two diagrams introduced for the database schema composition operator
†, and a model of this sketch be a functor F : E→ B, where B is a base category. Then
all cones in C have to be functorially translated into limit commutative diagrams in B,
and all cocones in C have to be functorially translated into limit commutative diagrams
in B: i.e., the cocone in the figure above has to be translated into coproduct diagram,
and cone translated into product diagram in B.

Consequently, the object F (A † B) has to be both the product A×B and coproduct
A+B, where A = F (A) and B = F (B) are two objects in B; × and + are the product
and coproduct operators in B, but this can not be done in Set. In fact, the product A×B
in Set is the Cartesian product of these two sets A and B while the coproduct A+B
is the disjoint union. Hence, A×B ≃ A+B is not an isomorphism in Set. �

Remark: The fundamental consequence of this lemma is that we need to define a new
base category for the categorial semantics of database mappings. In fact, we defined
this new base category B, denoted by DB (DataBase) category, and we have shown
that it satisfies the duality property, where the product and coproduct diagrams are dual
diagrams and hence for any two objects (instance databases) in DB, the objects A×B
and A+B are equal (up to isomorphism).
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2.1 Data separation: (co)product operator in DB

Separation-composition of objects are coproducts (and products) in DB category:

Definition 4: The disjoint union of any two instance-databases (objects) A and B,
denoted by A+B, corresponds to two mutually isolated databases, where two database
management systems are completely disjoint and hence it is impossible to compute the
queries with the relations from the both databases.

The disjoint property for mappings is represented by the facts that

∂0(f + g) , ∂0(f) + ∂0(g) and ∂1(f + g) , ∂1(f) + ∂1(g).

Thus, for any database A, the replication of this database (over different DB servers)
can be denoted by the coproduct object A+A in this category DB.

Proposition 1: For any two databases (objects) A and B, T (A+B) = TA+ TB.
Consequently A+A is not isomorphic to A.

Proof: T (A+B) = TA+ TB is true because of the fact that we are able to define
views only over relations in A or, alternatively, over relations in B. Analogously
f̃ + g = f̃ + g̃, which is a closed object, that is,

T (f̃ + g) = T (f̃ + g̃) = T f̃ + T g̃ = f̃ + g̃ = f̃ + g.

From T (A+A) = TA+ TA ̸= TA we obtain that A+A is not isomorphic to A. �

Notice that for coproducts C+ ⊥0 = ⊥0 +C ≃ C is true, and for any arrow f
in DB, f+ ⊥1 ≈ ⊥1 +f ≈ f , where ⊥1 is a banal empty morphism between
objects and hence ∂0(⊥1) = ∂1(⊥1) =⊥0, with ⊥̃1 =⊥0.

We are now ready to introduce the duality property between coproducts and products
in this DB category:

Proposition 2: There exists an idempotent coproduct bifunctor + : DB× DB −→ DB
which is a disjoint union operator for objects and arrows in DB.

The category DB is cocartesian with initial (zero) object ⊥0 and for every pair
of objects A,B it has a categorial coproduct A+B with monomorphisms (injections)
inA : A ↩→ A+B and inB : B ↩→ A+B.

Based on duality property, DB is also Cartesian category with a zero object
⊥0. For each pair of objects A,B there exists a categorial product A×B with
epimorphisms (projections) pA = inOP

A : A×A� A and pB = inOP
B : B ×B � B,

where the product bifunctor is equal to the coproduct bifunctor, i.e., × ≡ +.

Proof:

1 For any identity arrow (idA, idB) in DB× DB, where idA and idb are the
identity arrows of A and B respectively,

˜idA + idB = ĩdA + ĩdB = TA+ TB = T (A+B) = ĩdA+B is true.

Thus, +1(idA, idB) = idA + idB = idA+B is an identity arrow of the object
A+B.
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2 For any

k : A −→ A1, k1 : A1 −→ A2, l : B −→ B1, l1 : B1 −→ B2,

˜+1(k1, l1) ◦+1(k, l) = ˜+1(k1, l1)
∩

+̃1(k, l) = ˜k1 ◦ k + l1 ◦ l

= ˜+1(k1 ◦ k, l1 ◦ l) = ˜+1((k1, k) ◦ (l1, l)),

thus +1(k1, l1) ◦+1(k, l) = +1((k1, k) ◦ (l1, l)).

3 Let us demonstrate the coproduct property of this bifunctor: for any two arrows
f : A −→ C, g : B −→ C, there exists a unique arrow k : A+B −→ C, such
that f = k ◦ inA, g = k ◦ inB , where inA : A ↩→ A+B, inB : B ↩→ A+B are
the injection (point to point) monomorphisms (ĩnA = TA, ĩnB = TB).

It is easy to verify that for any two arrows f : A −→ C, g : B −→ C, there exists
exactly one arrow k = eC ◦ (f + g) : A+B −→ C, where eC : C + C � C is an
epimorphism (with ẽC = TC), such that k̃ = f̃ + g̃. �

2.2 Data federation operator in DB

The opposite operation to (co)product (a DBMS’s separation) is the DBMS’s data
federation of two database instances A and B. In this way we are able to compute the
queries with the relations of both databases. In fact, data federation technology is just
used for such an integration of two previously separated databases.

Consequently, given any two databases (objects in DB) A and B, the federation of
them (under the common DBMS) corresponds to union of them under the same DBMS,
thus, equals to database A

∪
B.

3 Categorial semantics of database schema mappings

It is natural for the database schema A = (SA,ΣA), where SA is a set of n-ary
relation symbols and ΣA are the database integrity constraints, to take ΣA to be a
tuple-generating dependency (tgd) and equality-generating dependency (egd). We denote
the empty database schema with empty set of relation symbols by A∅, where ΣA∅ is
the empty set of integrity constraints.

A tgd specifies that if some tuples satisfying certain equalities exist in the relation
then some other tuples (possibly with some unknown values) must also exist in the
relation.

An egd specifies that if some tuples satisfying certain equalities exist in the relation
then some values in these tuples must be equal. Functional dependencies are egds of
a special form, for example primary-key integrity constraints. These two classes of
dependencies together comprise the embedded implication dependencies (EID) (Fagin,
1982) which seem to include all naturally-occuring constraints on relational databases
(the bold symbols x, y, ... denote a non-empty list of variables):
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1 a tuple-generating dependency (tgd) of the FOL form

∀x (∃y ϕA(x, y) ⇒ ∃z (ψA(x, z))

where the formulae ϕA(x, y) and ψA(x, z) are conjunctions of atomic formulas
over A (for integrity constraints over database schemas, we consider only class of
weakly-full tgd for which query answering is decidable, i.e., when the right-hand
side has no existentially quantified variables and if each yi ∈ y appears at most
once in the left-hand side).

2 an equality-generating dependency (egd):

∀x (ϕA(x) ⇒ (x1 = x2))

where a formula ϕA(x) is a conjunction of atomic formulas over A; x1 and x2
are among the variables in x.

Notice that any schema database mapping from a schema A into a schema B is
represented by the general tgd ∀x (∃y ϕA(x, y) ⇒ ∃z ψB(x, z)), that is by the view
mapping qA(x)⇒ qB(x), as used in Definition 7 provided later on, where qA(x)
(equivalent to ∃y ϕA(x, y) is a query over the schema A, and qB(x) (equivalent to
∃z ψB(x, y)) is a query over the schema B.

Next, we explain how the logical model theory for database schemas and their
mappings based on views can be translated into the category theory by using the DB
category defined in the previous section. The integrity constraints for databases are
expressed by the FOL logical sentences (i.e., the FOL formulae without free variables).
Such sentences are expressed in the schema database level by the mappings from the
database schema A into the empty database schema A∅. We define their denotation in
the DB category as follows:

Definition 5: For any sentence φ : A → A∅ (a logical formula without variables, in
Definition 1) over a database schema A and a given interpretation α such that φ is
satisfied by it, then there exists the unique morphism from A into terminal object ⊥0

in DB category, f : A→⊥0, where f = α∗(φ) and A = α∗(A) (for A ≃⊥0 as well).
Otherwise, when A = α∗(A) is not isomorphic to ⊥0 and if φ is not satisfied by α then
α∗(φ) is mapped into the identity arrow id⊥0 :⊥0→⊥0.

Notice that unlike view-mappings for queries (formulae with free variables) given in
Definition 2, the integrity constraints in a DB category have the empty database (zero
object, i.e., terminal and initial) as the codomain, and the information flux equals to
⊥0= {⊥}. It is consistent with the definition of morphisms in DB category because
the sentences do not transfer any data from source to target database and hence their
information flux has to be empty. In the case of ordinary query mappings, the minimal
information flux is {⊥} =⊥0 as well. In DB category, for any unique morphism from
initial object ⊥0 (empty database) to another object (database) A, f :⊥0→ A, the
information flux of these morphisms is also equal to ⊥0.

Based on these semantics for logical formulae without free variables (integrity
constraints and Yes/No queries), we are able to define the categorial interpretations for
database schema mappings, as follows.
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3.1 Categorial semantics of database schemas

As we explained in Section 2, in order to define the database mapping systems, we
use two fundamental operators for the database schemas, data federation

⊕
and data

separation †, with the two correspondent monoids, ((S,=), †,A∅) and ((S,=),
⊕
,A∅),

and the distribution law: A
⊕

(B † C) = (A
⊕
B) † (A

⊕
C).

Consequently, each vertex in the graph G of a database mapping system is a term
of the combined algebra of these two monoids, SAlg = ((S,=),

⊕
, †,A∅).

In the rest of the paper, we denote the database schema for any well formed
term (i.e., an algebraic expression) of this algebra for schemas SAlg . We also denote
by A ∈ SAlg a database schema that can be either an atomic schema or composed
schema by a finite number of atomic schemas and two algebraic operators

⊕
and data

separation † of the algebra SAlg .
Consequently for each schema A ∈ SAlg , we have A = (SA,ΣA), where

SA =
⊎
{SBi | Bi is an atomic schema in the schema expression A} and

ΣA =
⊎
{ΣBi | Bi is an atomic schema in the schema expression A}.

For each atomic schema database and an interpretation α, A = α∗(A) is an
instance-database of this schema and thus it is an object in DB category. The
interpretation of the composite schemas (i.e., the non-atomic terms of the algebra SAlg)
in DB category is given by the following proposition:

Proposition 3: Let α be a given interpretation then there exists the following
homomorphism from the schema database level into the instance database level:

α∗ : ((S,=),
⊕

, †,A∅)→ ((ObDB ,≃),
⊎
,+,⊥0).

Proof: The interpretation of a given schema A is an instance A = α∗(A) of this
database, that is an object in DB; for every interpretation α∗(A∅) =⊥0.

From the monoidal property we have the equation A
⊕
A∅ = A in the algebra SAlg .

By the above homomorphism, we have that α∗(=) = ≃ and α∗(
⊕

) =
⊎
, so that

α∗(A
⊕
A∅) = α∗(A)

⊎
α∗(A∅) = A

⊎
⊥0≃ A. From the monoidal property we have

the equation A † A∅ = A in the algebra SAlg . By the homomorphism above we have
α∗(†) = +, so that α∗(A † A∅) = α∗(A) + α∗(A∅) = A+ ⊥0≃ A is an isomorphism
in DB. �

Let A = (SA,ΣA) be the database schema, where SA is a set of relation symbols
with a given list of attributes and ΣA = Σtgd

A

∪
Σegd

A = π2(A) are the database integrity
constraints (set of EIDs) which can be an empty set as well. We can represent the
integrity constraints by a sketch schema mapping ϕA : A −→ A∅ (ϕA denotes the
sentence obtained by conjunction of all formulae in ΣA), where A∅ is the empty
schema, such that for any interpretation α it holds that α(A∅) =⊥0.

Proposition 4: If there exists a model A for a database schema A = (SA,ΣA) which
satisfies all integrity constraints ΣA = Σtgd

A

∪
Σegd

A (ϕA denotes the sentence obtained
by conjunction of all formulae in ΣA) then there exists the following interpretation
R-algebra α and its extension, the functor α∗ : Sch(G) −→ DB, where Sch(G) is the
sketch category derived from the graph G with the arrow ΣA : A −→ A∅ (i.e., Sch(G)
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is composed of the objects A, A∅, the arrow ϕA : A −→ A∅ and the identity arrows
idA : A −→ A and idA∅ : A∅ −→ A∅), such that:

1 α∗(A) , A, where A is possibly an empty database instance
(with all empty relations) as well

2 α∗(idA) , idA : A −→ A

3 α∗(idA∅) , id⊥0 :⊥0−→⊥0

4 α∗(ϕA) , (ftgd
∪
fegd) : A −→⊥0.

Proof: From Definition 5 and Point 4 of this proposition, each integrity constraint
qi ∈ ΣA of the database schema A is satisfied by the interpretation α (because the
conjunction of all integrity constraints, denoted by ϕA, is satisfied w.r.t the Definition 5):
if ΣA is empty then it is always satisfied as usual. Thus α is a model of a database
schema A and the instance of this model is the non-empty database A = α∗(A), that is
an object in the DB category. �

Notice that any empty database A (that is, all its relations are empty) is isomorphic to
the database ⊥0 with only one empty relation ⊥ (i.e., ⊥0= {⊥}). It is easy to show
because any arrow for this empty database f : A→ A has the information flux f̃ =⊥0

and hence f = idA is the unique identity arrow for this empty database. However,
the unique arrows g : A→⊥0 and h :⊥0→ A have the same information fluxes,
i.e., g̃ = h̃ =⊥0 and hence g ◦ h = id⊥0 and h ◦ g = idA, and, consequently, A ≃⊥0.

Consequently, the remark in point 1 of this proposition specifies that if
A = α∗(A) ≃⊥0 is an empty database then:

1 α∗ is a model of a schema A

2 integrity constraint for point 4 in this proposition corresponds to the satisfaction of
this integrity constraint w.r.t. the Definition 5.

3.2 Categorial semantics of database mappings

First, we formally define a schema database mapping graph G, as follows:

Definition 6: A schema database mapping graph G is composed of an atomic arrow
ΣA : A → A∅ for each database schema A, and a number of (a view-based) atomic
schema database mappings M : A → B between two given schemas A and B.

We use the following basic binary operators for these database mapping graphs:

• Given two mappings M1 : A → B and M2 : B → C, we denote their sequential
composition in this graph G by M2;M1, where ; is a binary associative but a
non-commutative operator.

• Given two mappings M1 : A → B and M2 : A → C, we denote their branching
in this graph G by M2

⊎
M1 : A → B†C, where

⊎
is a binary associative and

commutative operator of disjoint union.

It is easy to verify that a graph G can be extended into a sketch category Sch(G).
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The semantics of a view-based mapping M = {qAi(xi)⇒ qBi(xi)|1 ≤ i ≤ n} from
a relational database schema A into a database schema B are constraints on the pairs
of interpretations, of A and B, and therefore specify which pairs of interpretations
can co-exist (i.e., also satisfy the mapping between schemas), given the mapping
(see Madhavan et al., 2002 also). The formalisation of the embedding γ : G→ Sch(G)
of a graph G into the sketch Sch(G) can be given by iteration of the following rules:

Definition 7: We consider the view-based mappings between schemas defined
in the SQL language of SPJRU algebra. The arrows in the sketch Sch(G),
for any arrow M : A → B in a given graph G in Definition 6, where
M = {qAi(xi)⇒ qBi(xi)|1 ≤ i ≤ n} and qAi(xi), qBi(xi) are open FOL formulae
over A, are defined as follows:

1 for each qAi(xi)⇒ qBi(xi) ∈M such that that qBi is not a relation symbol of a
database schema B, we introduce a new relation ri(xi) in γ(B) (we use the same
symbol for this γ-enlarged database schema by these new relations). Then we
introduce the single mapping arrow fM : A → B in Sch(G), where

fM = γ(M) ,
∪

1≤i≤n

{vi · qi : A −→ B | ∂0(qi) = Ri,

∂1(qi) = ∂0(vi), ∂1(vi) = {ri}}

and qi and vi are abstract ‘operations’ (operads) introduced in Definition 2, such
that for a given model α of this database schema mapping, α(qi) is a query
computation of a query qAi(xi). The set Ri is the set of relation symbols in A
used in the formula qAi(xi).

2 for each qAi(xi)⇒ qBi(xi) ∈M such that qBi is not a relation symbol of a
database schema B (then qAi(xi)⇒ qBi(xi) (logical implication between queries)
means that each tuple of the view obtained by the query qAi(xi) is also a tuple of
the view obtained by the query qBi(xi)), we do as follows:

In this sketch Sch(G), we introduce a new helper database schema Ci with a
single relation ci(xi, y) and two new schema mappings:

fACi = wi · qi : A → Ci (with ∂0(wi) = ∂1(qi) and ∂1(wi) = {ci}) and
fBCi = w′

i · q′i : B → Ci (with ∂0(q′i) = R′
i, ∂1(q

′
i) = ∂0(w

′
i) and ∂1(w

′
i) = {ci},

where R′
i is the set of all relation symbols in B used in the formula qBi(xi)) such

that fACi corresponds to {qAi(xi)⇒ ci(xi, ♮A)} and fBCi corresponds to
{qBi(xi)⇒ ci(xi, ♮B)}, where ♮A and ♮B are two new values not present in the
domain of the databases.

Consequently, in G, we also introduce the integrity constraint arrow φi : Ci → A∅
for this new schema Ci, where the sentence φi is equal to the tgd

∀xi (∃y(ci(xi, y) ∧ y = ♮A) =⇒ ∃z(ci(xi, z) ∧ z = ♮B)).
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It is easy to verify that there is at most one arrow between any two nodes in the obtained
sketch Sch(G). There is a fundamental functorial interpretation connection between
schema mappings and their models in the instance level category DB. It is based on
the Lawvere (1963) categorial theories (Barr and Wells, 1985) in which he introduced
a way of describing algebraic structures using categories for theories, functors (into
base category Set, which we substitute by more adequate category DB), and natural
transformations for morphisms between models.

For example, Lawvere’s seminal observation is that the theory of groups is a
category with group object, that a group in Set is a product preserving functor, and
that a morphism of groups is a natural transformation of functors. This observation was
successively extended to define the categorial semantics for different algebraic and logic
theories.

This work is based on the theory of sketches, which are fundamentally small
categories obtained from graphs enriched with concepts such as (co)cones mapped by
functors in (co)limits of the base category Set. It was demonstrated that, for every
sentence in basic logic, there is a sketch with the same category of models and vice
versa (Makkai and Pare, 1989). Accordingly, sketches are called graph-based logic and
provide very clear and intuitive specification of computational data and activities.

For any small sketch E, the category of modelsMod(E) is an accessible category by
Lair’s theorem and reflexive subcategory of SetE by Ehresmann-Kennison theorem. A
generalisation to base categories other than Set was proved by Freyd and Kelly (1972).
In rest of the paper, we substitute the base category Set by this new database category
DB.

For instance, for the separation-composition mapping cocone diagram (graph G),
given in the introduction, its translation in a sketch (a category Sch(G)) is in the
left-hand side commutative diagram presented below (notice that the mapping arrowM
in a graph G is replaced by the morphism fM in this sketch, while the nodes (objects)
are changed eventually by introducing another auxiliary relation symbols as explained
in Definition 7), and the functorial translation of this sketch into DB category has to be
coproduct diagram in DB as follows:

γ(A)
fM1- γ(A) † γ(B) �

fM2

γ(B) A ⊂

InA
- A+B �

InB
⊃ B

V

γ(C)

fM

?�

fM
B

f
M

A
-

C

k

?�

gf

-

As we explained in the introduction, in database mapping systems, expressed by a graph
G, we never use ‘commutative diagrams’ as left diagram above (but only an arrow
fM : γ(A) † γ(B)→ γ(C), or, more frequently, two simple arrows fMA

= γ(MA) :
γ(A)→ γ(C) and fMB = γ(MB) : γ(B)→ γ(C)), our sketch E = Sch(G) is a simple
small category, i.e., 4-tuple (G, u,D,C) where D and C are empty sets. Consequently,
these database-mapping sketches are more simple than the sketches used for definition
of Entity-Relationship models of single relational databases.
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Proposition 5: Let Sch(G) be a schema sketch category generated from a schema
mapping graph G that is obtained by applying the method in Definition 7 for each
mapping between two database schemas in a given database mapping system with
n ≥ 2 database schemas. Let an interpretation R-algebra α satisfies the following
property: for any database schema A (object in Sch(G)), α satisfies the Proposition 4
so that A , α∗(A) ∈ ObDB is a model of the database schema A and for each schema
mapping arrow fSch : A −→ B, (where B is not empty schema) the atomic morphism
in DB category α∗(fSch) : α

∗(A)→ α∗(B) is determined by banal set-inclusion case
of Definition 2.

Now there is the functor (categorial model)

α∗ : Sch(G) −→ DB .

The set of categorial models of the database schema mapping graph G is equal to the
homset hom(Sch(G),DB) of all functors from these two categories in the category
Cat, i.e., equal to the set of all objects in the category of functors DBSch(G) as well.

For a given model (functor) α∗ ∈ DBSch(G), its image in DB is called a
DB-mapping' \verbsystem’ and is denoted byMS .

Proof: This is easy to verify based on general theory for sketches (Barr and Wells,
1985). Each arrow in a sketch (obtained from a schema mapping graph G) may
be converted into a tree syntax structure of some morphism in DB (labelled tree
without any interpretation). The functor α∗ is only a simple extension of the
interpretation R-algebra function α for a lists of symbols. The functorial property
for the identity mappings follows from Proposition 4. For any two atomic mappings,
fSch : A −→ B and gSch : B −→ C, and their atomic morphisms in DB, f = α∗(fSch)
and g = α∗(gSch), we have that α∗(gSch ◦ fSch) = g ◦ f as defined in Definition 3. It
remains only to verify that for each auxiliary database schema Ci and integrity constraint
φi : Ci → A∅ (in Definition 7), the operator α∗ satisfies the functorial property such
that this schema arrow is mapped into the arrow α∗(φi) : Ci →⊥0, where Ci = α∗(Ci).
In fact it is true because if α is a model of this database mapping system represented
by the graph G then this integrity constraint φi is satisfied and, based on Definition 5,
the functorial property is satisfied.

Notice that this proposition is also true for the special cases when
Ci = α∗(Ci) ≃ ⊥0. This special case occurs when, for a view mapping qA(x)⇒
qB(x), both ∥qA(x)∥ (resulting view of the query qA(x) over the database A = α∗(A))
and ∥qB(x)∥ (resulting view of the query qB(x) over the database B = α∗(B)) are
empty relations and consequently α(ci(x, y)) is an empty relation in the database
instance Ci = α∗(Ci) = {α(ci(x, y))} and hence Ci ≃⊥0. Thus an integrity constraint
φi : Ci → A∅ (an auxiliary arrow in Sch(G) obtained from some mapping between two
database schemas in G) can be unsatisfied only if Ci = α∗(Ci) is not isomorphic to ⊥0.
In order to prove that the set of functors in DBSch(G) is exactly the set of all models
of the database mapping system expressed by the graph G, it is now enough to prove
that any interpretation α that is not a model of G then that interpretation can not be a
functor from Sch(G) into DB. In order that a given α is not a model of G, the α must
satisfy the following cases:
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1 For some database schema A in G, α∗(A) is not a model of this database. It
means that the conjunction of all integrity constraints ΣA : A → A∅ of A is not
satisfied by α (thus when α∗(A) not isomorphic to ⊥0, as specified by
Definition 5) so that, from Definition 5, α∗(Σa) = id⊥0 :⊥0→⊥0, so that does
not satisfy the functorial requirement because database instance α∗(A) is not
isomorphic to ⊥0.

2 An integrity constraint φi : Ci → A∅ (an auxiliary arrow in Sch(G) obtained from
some mapping between two database schemas in G) with Ci = α∗(Ci) is not
isomorphic to ⊥0, is not satisfied by α so that, from Definition 5,
α∗(φi) = id⊥0 :⊥0→⊥0, so that does not satisfy the functorial requirement
(because database instance α∗(Ci) is not isomorphic to ⊥0). �

Notice that in this functorial semantics for database mappings, an original schema
database mapping M : A → B (with a correspondent arrow fM = γ(M) : γ(A)→
γ(B), where γ(A) and γ(B) are the original database schemas enlarged by a
number of auxiliary relations introduced in Definition 7) can be translated into the
arrow f = α∗(γ(M)) : α∗(A)→ α∗(B) between the instances of the original schema
databases A and B without added auxiliary relations. This is because α∗(A) and α∗(A)
are isomorphic in DB to α∗(γ(A)) and α∗(γ(A)) respectively as follows:

Proposition 6: For any database schemas A and B, in a given schema database
mapping graph G, A = α∗(A) ≃ α∗(γ(A)). Consequently, any functorial semantics of
a given schema database mappingM : A → B is represented in the DB category by the
morphism, f ≈ α∗(γ(M)) : α∗(A)→ α∗(B).

Proof: It is easy to show that T (α∗(A)) = T (α∗(γ(A))) because each γ-added relation
ri(xi) is just a subrelation of the view obtained by the query qBi(xi) over the relations
in the original database B that is a part of the view mapping qAi(xi)⇒ qBi(xi) ∈M :
A → B (see point 2 in Definition 7).

Consequently, we have the isomorphisms isA : α∗(A) ≃ α∗(γ(A)) and
isB : α∗(B) ≃ α∗(γ(B)) and hence f = is−1

B ◦ α∗(γ(M)) ◦ isA : A→ B, i.e.,
f ≈ α∗(γ(M)). �

It is the reason why we can use the original database schemas A and their database
instances A = α∗(A), instead of γ(A), in the DB category.

4 Conclusions

In this research we defined a base database category DB where objects are
instance-databases and morphisms between them are extensional GLAV mappings
between databases. We defined equivalent (categorically isomorphic) objects (database
instances) from the behavioural point of view based on observations. That is, each
arrow (morphism) is composed of a number of ‘queries’ (view-maps) and each query
may be seen as an observation over some database instance (object of DB). Thus, we
characterised each object in DB (a database instance) by its behaviour according to a
given set of observations. In this way, two databases A and B are equivalent (bisimilar)
if they have the same set of observable internal states, i.e., when TA is equal to TB.
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We have shown that such a DB category is equal to its dual and is symmetric in the way
that the semantics of each morphism is a closed object (database) and, vice versa, that
each database can be represented by its identity morphism and hence DB is a 2-category.

The algebraic database lattice and the categorial (functors) semantics for two basic
database operations, matching and merging, have been introduced in Majkić (2009a).

In the current research, we considered the schema level for databases and their
view-based mappings, based on queries. The fundamental operations for databases,
in the view of inter-mappings between them, are the separation and federation of
databases. The inter-mappings depend on the kind of DBMS system used for two
mapped databases. When two databases are federated then we can compute the queries
over the relations of the both databases. When they are separated by two independent
DBMSs then DBMS can compute only the queries with all relations for only one of
these two databases.

We have shown that the two fundamental operators, data separation and data
federation, used in schema database mapping system, need a different base category
from Set where coproducts are equal to products (up to isomorphism). Then we defined
the graphs schema database mapping systems and the sketches for such database graphs.
Consequently we defined the categorical functorial semantics for these sketches into
new base database category DB.
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