

 Int. J. Intelligent Information and Database Systems, Vol. 4, No. 5, 2010 509

 Copyright © 2010 Inderscience Enterprises Ltd.

Kleisli category and database mappings

Zoran Majkić
International Society for Research in Science and Technology,
Via Palestro 13, 00185 Roma, Italy
E-mail: majk.1234@yahoo.com

Bhanu Prasad*
Department of Computer and Information Sciences,
Florida A & M University, Tallahassee,
Florida 32307, USA
E-mail: bhanu.prasad@famu.edu
*Corresponding author

Abstract: This paper presents the semantics of database mappings in the
relational database (DB) category, based on the power-view monad T and
monadic algebras. The semantics can be interpreted as a computational model
of view-based mappings between databases, where each query (view-mapping)
can be seen as a program, so that we can use the paradigm ‘from values to
computations’. The objects in this category are the database-instances. The
morphisms of such DB category are used in order to express the semantics of
view-based global and local as view (GLAV) mappings between relational
databases such as those used in data integration systems. Consequently, the
semantics of database mappings in this DB category are defined based on the
power-view monad T and the Kleisli category for databases, which can be
‘internalised’ in this basic DB category.

Keywords: relational databases; database mappings; denotational semantics.

Reference to this paper should be made as follows: Majkić, Z. and Prasad, B.
(2010) ‘Kleisli category and database mappings’, Int. J. Intelligent Information
and Database Systems, Vol. 4, No. 5, pp.509–527.

Biographical notes: Zoran Majkić received his Master of Telecommunication
Degree in Electromagnetic Engineering from ETF University of Belgrade,
where he worked for two years as an Assistant Professor. After that he changed
his work and started doing research in Computer Science and received his
PhD in Computer Science, from La Sapienza University, Roma, Italy. He is
currently working as an Information Technology Advisor and also doing
academic research in computer science and quantum physics. His research
interests include knowledge-base and database systems, artificial intelligence,
category theory and algebras.

Bhanu Prasad received his Master of Technology and PhD, both in Computer
Science, from Andhra University and Indian Institute of Technology Madras
respectively. He is currently working as an Associate Professor in
the Department of Computer and Information Sciences at Florida A & M
University in Tallahassee, Florida, USA. His research interests include
knowledge-based systems and artificial intelligence.

 510 Z. Majkić and B. Prasad

1 Introduction

The notion of a monad is one of the most general mathematical notions. For instance,
every algebraic theory, that is, every set of operations satisfying equational laws, can be
seen as a monad. Moggi (1989, 1991) stressed the computational significance of monads
and explained how they may help understand programs “as functions from values to
computations”. The idea of Moggi, roughly, is to give denotational semantics to
computations and it presents an alternative to the conceptual gap between the intensional
(operational) and the extensional (denotational) approaches to the semantics of
programming languages.

The idea of monad as a model for computations, based on an endofunctor T for a
given category, is that for each set of values of type ,A TA is the object of computations
of ‘type ’.A Let us explain the way we can use such denotational semantics, based on
monads, in the case of relational databases. It is well-known that the relational databases
are complex structures, defined by some sets of n-ary relations. In addition, the mappings
between the relational databases are based on some sets of view-mappings between a
source database A and a target database .B We consider the views as a universal
property for databases (i.e., possible observations of the information contained in some
database).

We assume that a view of a database A as the relation (set of tuples) obtained by a
‘Select-Project-Join + Union’ (SPJRU) query ()xq where x is a list of attributes of this
view. We denote by LA the set of all such queries over a database A and by LA ≈ the
quotient algebra obtained by introducing the equivalence relation ,≈ such that

() ()x xq q'≈ if both queries result in the same relation (view). Thus, a view can be
equivalently considered as a term of this quotient algebra LA ≈ with carrier set of
relations in A and a finite arity of their operators, whose computation returns a set of
tuples of this view. If this query is a finite term of this algebra then it is called a ‘finitary
view’. Note that a finitary view can have an infinite number of tuples also.

Example: Let a database A be a single n-ary (with 1n ≥ a finite integer) relation .R
Then any relational query formula ()xq of finite length over this relation R will give a
single (possibly empty) relation qr with finite number of attributes. That is, the result is
the view over A obtained by this query ().xq If we apply all possible query formulae
(that are finite syntax SPJRU expressions) to this relation then we obtain the set TA of
all views over this database. If the domain of values of this database is finite, thus the
relation R has a finite number of tuples, then TA is a finite set of finite relations (views).
If the domain is infinite and R is the n-ary Cartesian product of this domain, then R has
an infinite number of tuples. In that case, any projection (i.e., simple finite query) over R
will be a relation (i.e., obtained view) with a finite number of attributes but with an
infinite number of tuples. In that case, the set TA is an infinite one (for example, the
subset of views with only one attribute and only one tuple, for each value of this infinite
domain).

DB category, a base category for the semantics of databases and mappings between
them, is different from the Set category. It is a computational model of view-based
mappings between the databases, where each query (view-mapping) can be seen as a
program, so that we can use the paradigm ‘from values to computations’. The objects in
this category are the database-instances (a database-instance is a set of n-ary relations,
i.e., a set of relational tables as in standard RDBs). The morphisms in DB category are

 Kleisli category and database mappings 511

used in order to express the semantics of view-based global and local as view (GLAV)
mappings between relational databases such as those used in data integration systems.
Such morphisms in this DB category are not functions but have complex tree structures.
Such an instance level database category DB has been introduced first time in a
technical report (Majkić, 2003a) and is also used (Majkić, 2003a). General information
about categories is available in classic books (Lane, 1971) while more information about
this particular database category ,DB with the set of its objects DBOb and set of its
morphisms ,DBMor is recently presented (Majkić, 2008). In this paper, we emphasise
only some basic properties of this DB category, in order to make this paper more self
contained.

Every object (denoted by , , ,)…A B C in this category is a database instance,
composed of a set of n-ary relations , 1,2,= …ia A i∈ that are also called ‘elements of

’.A The power-view operator T (as defined by Majkic, 2003a), with the domain and
codomain equal to the set of all database instances, is such that for any object (database)

,A the object TA denotes a database composed of the set of all views of .A The object
,TA for a given database instance ,A corresponds to the quotient algebra ,LA ≈ where

carrier is a set of equivalence classes of closed terms of a well-defined formulae of a
relational algebra, ‘constructed’ by -contructorsRΣ (relational operators in SPJRU
algebra: select, project, join and union) and symbols (attributes of relations) of a database
instance ,A and constants of the attribute domains. For every object ,A A TA⊆ and

=TA TTA are true, i.e., each (element) view of the database instance TA is also an
element (view) of a database instance .A

Closed object in DB is a database A such that .=A TA Note that even when A is
finitary (i.e., it has a finite number of relations) but having at least one relation with an
infinite number of tuples then TA has an infinite number of relations (views of)A and
thus TA can be an infinitary object. It is obvious that when a domain of constants of a
database is finite then both A and TA are finitary objects.

From a behavioural point of view that is based on observations, we can define
equivalent (categorically isomorphic) objects (database instances) as follows: each arrow
(morphism) is composed of a number of ‘queries’ (view-maps) and each query may be
seen as an observation over some database instance (object of).DB Thus, we can
characterise each object in DB (a database instance) by its behaviour according to a
given set of observations. Thus, the databases A and B are equivalent (bisimilar) if they
have the same set of observable internal states, i.e., when TA is equal to :TB

 iff .=A B TA TB≈

This equivalence relation corresponds to the isomorphism of objects in DB category
(Majkić, 2008). It is demonstrated that this powerview closure operator T can also be
extended to arrows of DB category and hence it is an endofunctor and defines a monad
(see Section 2).

It is already demonstrated (Majkić, 2003a; Majkić, 2008) that the basic properties of
this database category DB as: its symmetry property (bijective correspondence between
arrows and objects), and also its duality property (DB is equal to its dual)OPDB so that
each limit is a colimit as well (for example, the product is also coproduct, the pullback is
also pushout, empty database ⊥0 is the zero object, that is, it is both initial and terminal
object, etc.).

 512 Z. Majkić and B. Prasad

Consequently, the product ×A B of the databases A and B is equal to their
coproduct +A B and the semantics for them is that we are not able to define a view by
using the relations of both the databases. That is, these two databases have independent
DBMS for query evaluation. For example, the creation of an exact copy of a database A
in another -serverDB corresponds to the database .+A A

Majkić (2009) considered some relationships of DB and standard set category and
introduced the categorial (functors) semantics for two basic database operations namely
matching ⊗ and merging ⊕ such that for any two databases A and , ⊗ = ∩B A B TA TB
and ().⊕ = ∪A B T A B He also defined the algebraic database lattice and shown that
DB is concrete, small and is a locally and finitely presentable (lfp) category. Moreover,
he has shown that DB is V-category enriched over itself and developed a metric space
and a subobject classifier for this category and demonstrated that it is a weak monoidal
topos.

In this paper, we presented denotational semantics for database mappings based on
the power-view endofunctor ,T monadic -(co)algebrasT and their computational
properties in DB category, and Kleisly category of a monad T that is used for
categorical semantics of database mappings and database queries. The advantage of this
approach is to have denotational semantics for database mappings instead of using a
standard first-order logic approach that is based on GLAV semantics (Lenzerini, 2002;
Cali et al., 2003). Practical applications can be developed from this approach by having a
graphical tool with a high-level interface for the mappings between databases with clear
and formal denotational semantics.

The rest of the paper is organised as follows: Section 2 presents a brief introduction to
DB category and its power-view monad T [based on Majkić (2003a, 2008)]. Section 3
considers universal algebra theory for databases and monadic coalgebras for database
mappings. Finally, Section 4 presents the categorial semantics of database mappings,
based on Kleisly category of the monad .T

In what follows we will use the special symbol � in order to sign the end of proofs
and examples.

2 Monad over DB category

In this section, we present a brief introduction to DB category, based on the existing
works (Majkić, 2003a, 2008). We assume that the domain of every database is an
arbitrary large and finite set by default. This assumption is reasonable for all real
applications. We define a universal database instance ,ϒ as the union of all database
instances, i.e., { }, .ϒ = DBi ia a A A Ob∈ ∈ ϒ is the top object of this category, such that

,ϒ ϒ=T because every view ϒv T∈ is also a database instance and thus ,ϒv ∈ vice
versa, every element ϒr ∈ is also a view of ,ϒ thus .ϒr T∈

Every object (database) A contains an empty relation ⊥ as well. The object
composed only by this empty relation is denoted by ⊥0 and we have that 0 0 { }.⊥ =⊥ = ⊥T
Any empty database (i.e., a database with only empty relations) is isomorphic to this
bottom object ⊥0.

Morphisms of this category are all possible mappings between database instances
based on views. Elementary view-map for a given database A is given by a SPCU query

: .T= →iAi
qf A A Let us denote the extension of the relation obtained from this query

 Kleisli category and database mappings 513

iAq by .if Suppose that 1, ,…i ikr r A∈ are the relations used for the computation of this
query, and that the correspondent algebraic term liq is a function (it is not a

-coalgebra)T l : ,T→k
iq A A where kA is thk Cartesian product of .A Then,

l ()1, , .= …iA i i ik
qq r r Unlike the algebra term liq which is a function, a view-map

: T→iAq A A is not a function but a T-coalgebra.
Consequently, an atomic morphism : ,→f A B from a database A to database ,B is

a set of such view-mappings and generally it is not a function, making the DB category
different from the Set category where morphisms are functions.

We can introduce two functions, 0 1, : ()ϒ→ PDBMor∂ ∂ (which are different from
standard category functions , :),→DB DBdom cod Mor Ob such that for any view map

: ,T→iAq A A we have that ()0 1() , ,= …iA k
q r r A∂ ⊆ is a subset of relations of A used

as arguments by this query iAq and 1() { },=iAq v∂ where v TA∈ is the resulting view of
a query .iAq Here P is a power set operation. In fact, these two functions are such that
for any morphism : →f A B between databases A and ,B which is a set of
view-mappings iAq such that ,iAq B∈ we have that 0 ()f A∂ ⊆ and

1() .∩f TA B B∂ ⊆ ⊆ Thus, we have:

0 0 1 1() () () , () () ()= = = =∪ ∪i i

A Ai i

A A
q f q f

f q dom f A f q cod f B
∈ ∈

∂ ∂ ⊆ ∂ ∂ ⊆

Based on atomic morphisms (sets of view-mappings) which are complete arrows
(c-arrows), we obtain that their composition generates tree-structures that can be
incomplete (p-arrows) in the way that for a composed arrow := →h g f A Cο of two
atomic arrows : →f A B and : ,→g B C we can have situations where 0 0() ()f h∂ ⊂ ∂
and the set of relations in 0 0 0() () ()−h f g∂ ∂ ⊂ ∂ are denominated ‘hidden elements’.

Definition 1 (Majkić, 2008): The following BNF defines the set DBMor of all morphisms
in :DB

p-arrow: = c-arrow | c-arrow ο c-arrow (for any two c-arrows : →f A B and
:)→g B C

morphism:= p-arrow | c-arrow ο p-arrow (for any p-arrow : →f A B and c-arrow
:)→g B C

whereby the composition of two arrows, f (partial) and g (complete), we obtain the
following p-arrow (partial arrow) := →h g f A Cο

{ }{ }
{ }

0 1

1 0

& () ()

& () { } & ()

1 0 0

0

{ }

{ ()}

() () () & () () 0

() & () () 0 ,

≠

=

= =

= ≠

= ≠

∩

∩

∩

∪

∪
Bj Bj

Ai Ai Bj

Bj
q q q f

Ai
q f q v v q

Bj Ai Ai Bj Bj Bj

Bj Bj Bj

h g f q

q tree

q q tree q q q g q f

q tree q g q f

∈ ∂ ∂ ∅

∈ ∂ ∈ ∂

ο ο

ο

 ο ∂ ⊆ ∂ ∈ ∂

∈ ∂

where ()Aiq tree is the tree of the morphisms f below .Aiq

 514 Z. Majkić and B. Prasad

We define the semantics of any morphism : →h A C as an ‘information transmitted
flux’ from the source to the target object. An ‘information flux’ (denoted by �)h is a set
of views (as a result, it is an object in DB category as well) which is ‘transmitted’ by a
mapping.

In order to explain this concept of ‘information flux’, let us consider a simple
morphism : →f A B from a database A into a database ,B composed of only one view
map based on a single query 1 1() (), , (),←x … n nq R u R u where 0n ≥ and iR are the
names of the relations (at least one relation) that are in A or built-in predicates (e.g., ≤,
=, etc.) and q is the name of a relation that is not in .A Then, for any tuple c for which
the body of this query is true, ()cq must also be true, that is, this tuple from a database
A ‘is transmitted’ by this view-mapping into one relation of database .B The set (n-ary
relation) Q of all tuples that satisfy the body of this query will constitute the whole
information ‘transmitted’ by this mapping. The ‘information flux’ �f of this mapping is
the set ,TQ that is, the set of all views (possible observations) that can be obtained from
the transmitted information of this mapping.

Definition 2 (Majkić, 2008): We define the semantics of mappings by function
: ,→DB DBTB Mor Ob which, given any mapping morphism : ,→f A B returns with the

set of views (‘information flux’) that are really ‘transmitted’ from the source to the target
object.

1 for an atomic morphism, ||() {|| | }=� � i iA AT
q q ff B f T ∈

2 let : →g A B be a morphism with a flux ,�g and : →f B C an atomic morphism
with flux �f defined in point 1, then k () .T= � �� ∩f g B f g f gο ο

Thus, we have the following fundamental property:

Proposition 1: Any mapping morphism : →f A B is a closed object in ,DB i.e.,
.=� �f Tf

Proof: This proposition can be proved by structural induction; each atomic arrow is a
closed object || ||{|| | }) {|| | }((,= = = ��

i i i iA A A Aq q q qf f fTf T T T∈ ∈ each arrow is a
composition of a number of complete arrows, and the intersection of closed objects is
always a closed object. �

Remark: The ‘information flux’ �f of a given morphism (mapping) : →f A B is an
instance-database as well (its elements are the views defined by the formulae above),
thus, an object in DB as well.

Proposition 2 (Majkić, 2008): The following properties for morphisms are valid:

1 each arrow : ,\f A B such that =�f TB is an epimorphism [epic arrow (Lane,
1971)]

2 each arrow : ,f A B such that =�f TA is a monomorphism [monic arrow (Lane,
1971)]

3 each monic and epic arrow is an isomorphism, thus two objects A and B are
isomorphic iff ,=TA TB that is, �A B iff .=TA TB

 Kleisli category and database mappings 515

Note that in the standard set category, where the objects of the category are sets and the
arrows are functions between them, monic and epic arrows are injective and surjective
functions respectively. However, in this DB category, the arrows are not functions but
complex trees of functions.

Note that between any two databases A and B there is at least an ‘empty’ arrow
: →A Cφ such that 0

0 1(0) (0) 0 { } .= = = =�∂ ∂ ⊥ ⊥ We have that A⊥ ∈ for any
database A (in DB all objects are pointed by ⊥ relation), so that any arrow : →f A B
has as one component the empty mapping (thus, also arrows are pointed by 0).

If f is epic then ,TA TB⊇ if it is monic then .TA TB⊆ Thus we have an
isomorphism of two objects (databases), �A B iff .=TA TB

We define an ordering ≺ between databases by ≺A B iff .TA TB⊆
Thus, for any database A we have that ,A TA i.e., there is an isomorphic

arrow 0 1{ | () () { }= = =i i iA A AA
q q qis v∂ ∂ and }: →v A A TA∈ and its inverse
0 1{ | () () { }= = =i i i

inv
TA TA TAA

q q qis v∂ ∂ and }: }: ,→v A A TA TA A∈ ⊆ such that their
flux is j k .= =inv

A Ais is TA
The following duality theorem shows that for any commutative diagram in DB there

is also the same commutative diagram composed by the equal objects and inverted
equivalent arrows: this ‘bidirectional’ mappings property of DB is a consequence of the
fact that the composition of arrows is semantically based on the set-intersection
commutativity property for ‘information fluxes’ of its arrows. Thus, any limit diagram in
DB has also its ‘reversed’ equivalent colimit diagram with equal objects, any universal
property has also its equivalent couniversal property in .DB

Theorem 1 (Majkić, 2008): there exists the controvariant functor
0 1(,) := →S S S DB DB such that:

1 0S is the identity function on objects

2 for any arrow in ,DB : →f A B we have 1 () : ,→S f B A such that
1 () ,� invS f f where invf is (equivalent) reversed morphism of f (i.e., k),= �invf f

1 ()−= D Dinv inv
BAf is Tf is with

0 1() () { } &

() { : }
= =

→
�

� ∪ j

TB TBj j

inv
TB

q q v v f

qTf ATB T
∂ ∂ ∈

3 the category DB is equal to its dual category .OPDB

Let us extend the notion of the type operator T into the notion of the endofunctor in
DB category:

Theorem 2 (Majkić, 2008): There exists the endofunctor 0 1(,) : ,= →T T T DB DB such
that:

1 for any object ,A the object component 0T is equal to the type operator ,T i.e.,
0 () �T A TA

2 for any morphism : ,→f A B the arrow component 1T is defined by:

 516 Z. Majkić and B. Prasad

0 1

1

() () { } &

() () { : }
= =

= →
�

� ∪ i

TA TAi i

TA

q q v v f

qT f T f A BT T
∂ ∂ ∈

3 endofunctor T preserves properties of arrows, i.e., if a morphism f has a property
P (monic, epic, isomorphic), then also ()T f has the same property: let ,monoP epiP
and isoP are monomorphic, epimorphic and isomorphic properties respectively.

Proof: it can be found in the paper by Majkić (2008) �

The endofunctor T is a right and left adjoint to identity functor ,DBI i.e., ,� DBT I thus
we have for the equivalence adjunction , , ,C

DBT I η η< > the unit : �C
DBT Iη such that

for any object A the arrow () : ,→�C
AA AA is TAη η ≡ and the counit : �DBI Tη such

that for any A the arrow () : →� AA AA is TAη η ≡ are isomorphic arrows in DB (by
duality theorem, it is true that).=C invη η

The function () ()1 : → → →T A B TA TB is not a higher-order function (arrows in
DB are not functions): thus, there is no corresponding monad-comprehension for the
monad ,T which invalidates the thesis (Walder, 1990) that ‘monads ≡
monad-comprehensions’. It is only valid that ‘monad-comprehension ⇒ monads’.

We have already seen that the views of some database can be seen as its observable
computations: to obtain an expressive power of computations in the category ,DB we
need categorial computational properties, as known, based on monads.

Proposition 3: The power-view closure 2-endofunctor 0 1(,) := →T T T DB DB defines
the monad (, ,)T η μ and the comonad (, ,)C CT η μ in ,DB such that : �DBI Tη and

: �C
DBT Iη are natural isomorphisms, while : →TT Tμ and : →C T TTμ are equal

to the natural identity transformation : →Tid T T (because).=T TT

Proof: It is easy to verify that all commutative diagrams of the monad
,)A=D D D D DA A A TA T A AT id Tμ μ μ η μ η and the comonad are diagrams composed by

identity arrows. Notice that by duality we obtain .= = inv
TA A ATη η μ �

3 Categorial symmetry and behavioural equivalence

Let us consider the problem of how to define equivalent (categorically isomorphic)
objects (database instances) from a behavioural point of view based on observations. As
we can see, each arrow (morphism) is composed by a number of ‘queries’ (view-maps)
and each query may be seen as an observation over some database instance (object of

).DB Thus, we can characterise each object in DB (a database instance) by its
behaviour according to a given set of observations. Indeed, if one object A is considered
as a blackbox, the object TA is only the set of all observations on .A So, given two
objects A and ,B we are able to define the relation of equivalence between them based
on the notion of the bisimulation relation. If the observations (resulting views of queries)
of A and B are always equal, independent of their particular internal structure, then
they look equivalent to an observer.

In fact, any database can be seen as a system with a number of internal states that can
be observed by using query operators (i.e., programs without side-effects). Thus,
databases A and B are equivalent (bisimilar) if they have the same set of observations,
i.e., when TA is equal to :TB

 Kleisli category and database mappings 517

Definition 3 (Majkić, 2008): The relation of (strong) behavioural equivalence ′≈′ between
objects (databases) in DB is defined by:

=A B iff TA TB≈

the equivalence relation for morphisms is given by, .=� �f g iff f g≈

This relation of behavioural equivalence between objects corresponds to the notion of
isomorphism in the category DB (see Proposition 2). This introduced equivalence
relation for arrows ,≈ may be given by a (interpretation) function : →T DB DBB Mor Ob
(see Definition 2) such that ≈ is equal to the kernel of ,TB),= TkerB≈ i.e., this is a
fundamental concept for categorial symmetry (Majkić, 1998):

Definition 4 (Majkić, 1998), categorial symmetry: Let C be a category with an
equivalence relation ×C CMor Mor≈ ⊆ for its arrows (equivalence relation for objects
is the isomorphism)×C COb Ob ⊆ such that there exists a bijection between
equivalence classes of ≈ and ,∼ so that it is possible to define a skeletal category C
whose objects are defined by the imagine of a function : →T C CB Mor Ob with the
kernel ,=TkerB ≈ and to define an associative composition operator for objects *, for
any fitted pair Dg f of arrows, by () () ().∗ = DT T TB g B f B g f

For any arrow in ,C : ,→f A B the object ()TB f in ,C denoted by ,�f is
denominated as a conceptualised object.

Remark: This symmetry property allows us to consider all the properties of an arrow (up
to the equivalence) as properties of objects and their composition as well. Notice that any
two arrows are equal if and only if they are equivalent and have the same source and the
target objects.

In symmetric categories, iff .� �f g f g≈
Let us introduce, for a category C and its arrow category ,↓C C an encapsulation

operator : ,↓→C C CJ Mor Ob that is, a one-to-one function such that for any arrow
: , () , ,→ =f A B J f A B f< > is its correspondent object in ,↓C C with its inverse ψ

such that (, ,) .=A B f f< >ψ
We denote the first and the second comma functorial projections by
, : () →↓st ndF S C C C (for any functor : →F C D between categories C and ,D we

denote its object and arrow component by 0F and 1),F such that for any arrow
1 2(;) : , , , ,′ ′→k k A B f A B g< > < > in ↓C C (such that 2 1=D Dk f g k in),C we have

that 0 1
1 2 1(, ,) , (;)= =st stF A B f A F k k k< > and 0 1

1 2 2(, ,) , (;) .= =nd ndS A B f B S k k k< >
We denote the diagonal functor by : (),→ ↓C C C▲ such that for any object A in a

category ,C 0 () , , .= AA A A id< >▲ An important subset of symmetric categories are
conceptually closed and extended symmetric categories, as follows:

Definition 5 (Majkić, 1998): Conceptually closed category is a symmetric category C
with a functor 0 1(,) : ()= →↓e eeT T T C C C such that 0 ,=e TT B ψ i.e., 0 ,=T eB T J with a
natural isomorphism : ,D CeT Iϕ ▲ where CI is an identity functor for .C C is an
extended symmetric category if holds also 1 ,− • =τ τ ψ for vertical composition of
natural transformations : →st eF Tτ and 1 : .− →e ndT Sτ

Remark: it is easy to verify that in conceptually closed categories, any arrow f is
equivalent to an identity arrow, that is, .�ff id≈

 518 Z. Majkić and B. Prasad

It is easy to verify also that in extended symmetric categories the following is true:
1 0 11 0 0((;)) () ((;)),−• •e nd e ndstI IT F S T Sτ τ ψ ϕ ψ τ where : C C→I I Iτ is an identity natural

transformation (for any object A in ,C ()).A=I A idτ

Example 1: The set is an extended symmetric category: given any function : ,→f A B
the conceptualised object of this function is the graph of this function (which is a set),

() {(, ()) | }.= =�
Tf B f x f x x A∈

The equivalence ≈ on morphisms (arrows) is defined as follows: two arrows f and g
are equivalent, i.e., ,f g≈ iff they have the same graph.

The composition * of objects is defined as an associative composition of
binary relations (graphs), () {(, ()()) | } {(, , ()) | }= =D DTB g f x g f x x A y g y y B∈ ∈
{(, ()) | } () ().= ∗D T Tx f x x A B g B f∈

Set is also conceptually closed by the functor eT such that for any object
0() , , , (()) () {(, ()) | }= = =e TJ f A B f T J f B f x f x x A< > ∈ and for any arrow

1 2(;) : () (),=k k J f J g the component 1
eT is defined as: for any 0(, ()) (()),ex f x T J f∈

1
1 2 1 2(;)(, ()) ((), (())).=eT k k x f x k x k f x

It is easy to verify the compositional property for 1
eT and that

01
(())(;) .= ee T J fA BT id id id

For example, set is also an extended symmetric category, such that for any object
() , ,=J f A B f< > in ,↓Set Set we have that (()) | ()TJ f A B f\τ is an epimorphism,

such that for any , (())() (, ()),=x A J f x x f x∈ τ while 1(()) : ()−
TJ f B f Bτ is a

monomorphism such that for any (, ()) (),Tx f x B f∈ 1(())(, ()) ().− =J f x f x f xτ
Thus, each arrow in Set is a composition of an epimorphism and a monomorphism.�
Now we are ready to present a formal definition for the DB category:

Theorem 3 (Majkić, 1998): The category DB is an extended symmetric category, closed
by the functor 0 1(,) : () ,= →↓e eeT T T C C C where 0 =e TT B ψ is the object component
of this functor such that for any arrow f in ,DB 0 (()) ,= �eT J f f while its arrow
component 1

eT is defined as follows: for any arrow 1 2(;) : () ()→h h J f J g in ,↓DB DB
such that 1 2=D Dg h h f in ,DB holds:

i{ }
i() i() k

0 1 2

1
1 2

{ } &

(;)
= =

=
D

∪ i

f fi i

e f
q q v v h f

T h h q
∈∂ ∂

The associative composition operator for objects *, defined for any fitted pair Dg f of
arrows, is the set intersection operator .∩

Thus, k() () ().∗ = = =�� ∩ D DT T TB g B f g f g f B g f

Proof: Each object A has its identity (point-to-point) morphism
0 1() () { }& { }= ==∩ iA Aii

Aq q Av vA
qid ∂ ∂ ∈ and holds the associativity k k() ()= �D D ∩ Dh h g h g f

k k() () .= = =� � ��∩ ∩ D ∩ D Dh g f h g f h g f They have the same source and target object, thus
() () .=D D D Dh g f h g f Thus, DB is a category. It is easy to verify that also eT is a well

defined functor. In fact, for any identity arrow (;) : () ()→A Bid id J f J f it holds that
i() i() k i �

0 1
1 { } & { }(;) = == =D∪ B if fi i

f fq q v v id fe A B
qT id id id∈∂ ∂ is the identity arrow of .�f For any

two arrows 1 2 1 2(;) : () (), (;) : () (),→ →h h J f J g l l J g J k it holds that 1 11 2 1 2(;) (;)De eT h h T l l
k k k k i j � i i j �1 11 2 1 2 2 2 2 2 1 2 1 22 () () ()(;) (;) = = = = =� �∩ D ∩ D ∩ ∩ ∩ D D ∩ ∩ ∩ ∩e e g h g g h f by f g h g h h fT h h T l l T l T l l l

i j � k 1
2 1 2 2 2 2 1 1 2 2() (;),= = = =D D ∩ ∩ D D D Deby f g h h f h f T h hl l l l l finally 1 1

1 2 1 2(;) (;)De eT h h T l l

 Kleisli category and database mappings 519

1
1 1 2 2(;).= D DeT h hl l For any identity arrow, it holds that ,Aid k0 () = =e A AT J id id TA A

as well, thus, an isomorphism : De DBT Iϕ ▲ is valid. �

Remark: It is easy to verify (from 1)− • =τ τ ψ that for any given morphism : →f A B
in ,DB the arrow (()) := �

epf J f A f\τ is an epimorphism, and the arrow
1(()) :−= �

inf J f f Bτ is a monomorphism, so that any morphism f in DB is a
composition of an epimorphism and monomorphism ,= D epinf f f with the intermediate
object equal to its ‘information flux’ ,�f and with .epinf f f≈ ≈

4 Database mappings and monadic coalgebras

The notion of a monad is one of the most general mathematical notions. For instance,
every algebraic theory, that is, every set of operations satisfying equational laws, can be
seen as a monad (which is also a monoid in a category of endofunctors of a given
category: the ‘operation’ μ being the associative multiplication of this monoid and η is
its unit). Thus, monoid laws of the monad do subsume all possible algebraic laws.

In order to explore universal algebra properties (Majkić, 2009a; 2009b) for the
category ,DB where, generally, morphisms are not functions (this fact complicates a
definition of mappings from its morphisms into homomorphisms of the category of

-algebras),ΣR we will use an equivalent to DB ‘functional’ category, denoted by
,skDB such that its arrows can be seen as total functions.

Proposition 4: Let us denote by skDB the full skeletal subcategory of ,DB composed by
closed objects only. Such a category is equivalent to the category ,DB i.e., there exists
an adjunction of a surjective functor : →sk skDB DBT and an inclusion functor

: ,→sk skDB DBIn where 0
skIn and 1

skIn are two identity functions, such that
= sksk sk DBT In Id and .sk sk DBT In Id

There exists the faithful forgetful functor : ,→sk skDBF Set and
: : ,→DDB sk sk DBF F T Set thus skDB and DB are concrete categories.

Proof: It can be found in Majkić (2009a). The skeletal category skDB has closed objects
only, so, for any mapping : ,→f A B we obtain the arrow 0 ()= = →skTf T A TA TB can

be expressed in a following ‘total’ form such that 0
0 () () := =skT T Tf A A∂

0
0 1 0 1() () { } & () { } & & ()

{ } { }
= = = =� �

� ∪ ∪i i

TA TA TA TAi i i i

TA TAT
q q q qv v f v v f

q qf
∂ ∂ ∈ ∂ ∉ ∂ ⊥

so that 1 () := →TR skf F f TA TB (the component for objects 1
skF is an identity) is a

function in Set, 1 (),= DBRf F f such that for any ,v TA∈ ()= =Rf v v if ;⊥�v f∈
otherwise. �

In a given inductive definition, the value of a function (in our example the endofunctor
)T is defined on all (algebraic) constructors (relational operators). What follows is based

on the fundamental results of the universal algebra (Cohn, 1965).
Let ΣR be a finitary signature (in the usual algebraic sense: a finite collection ΣF of

function symbols together with a function : Σ →ar F N giving the finite arity of each
function symbol) for a single-sorted (sort of relations) relational algebra.

 520 Z. Majkić and B. Prasad

We can speak of -equationsΣR and their satisfaction in a -algebra,ΣR obtaining the
notion of a (,)-algebraΣR E theory. In a special case, when E is empty, we obtain a
purely syntax version of universal algebra, where K is a category of all -algebras,ΣR
and the quotient algebras are simply algebras of terms.

An algebra for the algebraic theory (type) (,)ΣR E is given by a set ,X called the
carrier of the algebra, together with interpretations for each of the function symbols in

.ΣR A function symbol ΣRf ∈ of arity k must be interpreted by a function
m : .→k
Xf X X Given this, a term containing n distinct variables gives rise to a function

→nX X defined by induction on the structure of the term. An algebra must also satisfy
the equations given in E in the sense that equal terms give rise to identical functions
(with obvious adjustments where the equated terms do not contain exactly the same
variables). A homomorphism of algebras from an algebra X to an algebra Y is given by
a function : →g X Y which commutes with operations of the algebra

1 1
ˆ ˆ((, ,)) ((), , ()).=… …X k kYg f x x f g x g x This generates a variety category K of all

relational algebras. Consequently, there is a bifunctor : × →OP
skE DB SetK (where Set is

the category of sets), such that for any database instance A in skDB there exists the
functor (,) : →−E A SetK with an universal element ((),),U A � where

((),), : ()→E AU A A U A∈� � is an inclusion function and ()U A is a free algebra over
A (quotient algebra generated by a carrier database instance),A such that for any
function (,)f E A X∈ there is a unique homomorphism h from the free algebra ()U A
into an algebra ,X with (,) .= Df E A h ��

From the so called ‘parameter theorem’ (Theorem 3 for adjunctions with a parameter
in Lane (1971) for a bifunctor :),× →OP

skE DB SetK we obtain that there exists:

• A unique universal functor : →skU DB K such that for any given database instance
A in skDB it returns with the free -algebraΣR ()U A (which is a quotient algebra),
where a carrier is a set of equivalence classes of closed terms of a well-defined
formulae of a relational algebra, ‘constructed’ by -constructorsΣR (relational
operators: select, project, join and union SPJRU) and symbols (attributes and
relations) of a database instance ,A and constants of attribute domains. An
alternative for ()U A is given by considering A as a set of variables rather than a set
of constants then we can consider ()U A as being a set of derived operations of arity
A for this theory. In either case, the operations are interpreted syntactically as

11
ˆ([], ,[]) [(, ,)].=… …k kf t t f t t In this, brackets denote equivalence classes, while,

for any ‘functional’ morphism (correspondent to the total function 1 ()sk TF f in Set,
:) :→ →sk sk TDBF Set f A B)skDB we obtain the homomorphism 1()=H Tf U f

from the -algebraΣR ()U A into the -algebraΣR (),U B such that for any term
1(, ,) (), ,Σ… n Ra a U A∈ ∈ρ ρ we obtain 1 1((, ,)) ((), , ()).=… …H n H H nf a a f a f aρ ρ

So, Hf is an identity function for algebraic operators and it is equal to the function
1 ()sk TF f for constants.

• Its adjoint forgetful functor : ,→ skF DBK such that for any free algebra ()U A
in K the object ()DF U A in skDB is equal to its carrier-set A (each term

1(, ,) ()… na a U A∈ρ is evaluated into a view of this closed object A in)skDB and
for each arrow 1()TU f holds that 1 1 () ,=T TF U f f i.e., = skDBFU Id and .=UF IdK

Consequently, ()U A is a quotient algebra, where carrier is a set of equivalence classes of
closed terms of a well-defined formulae of a relational algebra, ‘constructed’ by

-constructorsΣR (relational operators in SPJRU algebra: select, project, join and union)

 Kleisli category and database mappings 521

and symbols (attributes of relations) of a database instance A and constants of attribute
domains.

From the universal property, it immediately follows that the map ()A U A extends
to the endofunctor : .→D sk skF U DB DB This functor carries monad structure
(, ,)DF U η μ with DF U an equivalent version of T but for this skeletal database
category .skDB The natural transformation η is given by the obvious ‘inclusion’ of A
into () : []→D A a aF U (each view a in a closed object A is an equivalence class
of all algebra terms which produce this view). Note that the natural transformation η
is the unit of this adjunction of U and F and that it corresponds to an inclusion function
in the , : (),→Set A U A� given above. The interpretation of μ is almost equally
simple. An element of 2() ()D AF U is an equivalence class of terms built up from
elements of (),D AF U so that instead of 1, ,… kx x a typical element of 2() ()D AF U is
given by the equivalence class of a term 1[(, ,)].… kt t t The transformation μ is
defined by the mapping 11[([], ,[])] [(, ,)].… …k kt t t t t t This makes sense because a
substitution of provably equal expressions into the same term results in provably equal
terms.

We use monads (Lane, 1971; Lambek and Scott, 1986; Kelly and Power, 1993) for
giving denotational semantics to database mappings. More specifically, we use monads
as a way of modelling computational/collection types (Moggi, 1989, 1991; Buneman et
al., 1995; Plotkin and Power, 2001): to interpret database mappings (morphisms) in the
category ,DB we distinguish the object A (database instance of type)A from the object
TA of observations (computations of type A without side-effects) and take as a
denotation of (view) mappings the elements of TA (which are view of (type)).A In
particular, we identify the type A with the object of values (of type)A and obtain the
object of observations by applying the unary type-constructor T (power-view operator)
to .A It is well-known that each endofunctor defines algebras and coalgebras (the left and
right commutative diagrams):

Figure 1 Algebras and coagebras

We use the following well-known definitions in the category theory (the set of all arrows
in a category M from A to B is denoted by (,)) :A BM

Definition 6: The categories algCT of -algebras,T coalgCT of -coalgebras,T derived
from an endofunctor ,T are defined (Asperti and Longo, 1991) as follows:

1 the objects of algCT are pairs (,)A h with DBObA ∈ and (,),h DB TA A∈ the
arrows between objects (,)A h and (,)B k are all arrows (,)f DB A B∈ such that

:= →D Dk Tf f h TA B

 522 Z. Majkić and B. Prasad

2 the objects of coalgCT are pairs (,)A h with DBObA ∈ and (,),h DB A TA∈ the
arrows between objects (,)A h and (,)B k are all arrows (,)f DB A B∈ such that

: .= →D DTf h k f A TB

Definition 7: The monadic algebras/coalgebras, derived from a monad (, ,),T η μ are
defined (Asperti and Longo, 1991; Lane, 1971) as follows:

• Each -algebraT (, :),→A h TA A where h is a ‘structure map’, such that
=D DAh h Thμ and =D AAh idη holds is a monadic -algebra.T The category of

all monadic algebras algT is a full subcategory of .algCT

• Each -coalgebraT (, :),→A k A TA such that =D DC
ATk k kμ and =DC

A Ak idη
holds is a monadic -coalgebra.T The category of all monadic coalgebras coalgT is a
full subcategory of .coalgCT

Note: The monad (, ,)T η μ given by commutative diagrams

Figure 2 Monads

defines the adjunction , , , : →T T T T algTF G DB< >η μ such that
: ,= →DT T TG F DB DB ,=Tη η =T invηε and .= T T TG Fμ ε The functors

: →T algTF DB and : →T algTG DB are defined as follows: for any object (database)
,A () (, :),= invT

AF A A TA Aη while (, :) ,=invT
AG A TA A TAη for arrows TF and

TG are identity functions.

Definition 8: Given a monad (, ,)T η μ over a category ,M we have (Lane, 1971):

• Kleisli triple is a triple (, ,),∗−T η where for : →f A TB we have : ,∗ →f TA TB
such that the following equations hold: ,TA

∗ =A idη ,∗ =D Af fη (),∗ ∗ ∗=D Dg f g f for
: →f A TB and : .→g B TC

A Kleisli triple satisfies the mono requirement provided Aη is monic for each object
.A

• Kleisli category TM has the same objects as M category. For any two objects
,A B there is the bijection between arrows : (,) (,).→A TB A Bθ M M For any two

arrows : ,→f A B : →g B C in ,TM their composition is defined by
1 1(() ()).− −D � D DCg f T g fθ μ θ θ

The mono requirement for monad (, ,)T η μ (Moggi, 1991) is satisfied because
: →A TAAη is a isomorphism =A Aisη (we denote its inverse by 1),−

Aη thus it is also
monic. Consequently, the category DB is a computational model for view-mappings
(which are programs) based on observations (i.e., views) with the typed operator ,T so
that:

 Kleisli category and database mappings 523

• TA is a type of computations (i.e., observations of the object of values A (of type
),A which are the views of the database).A

• Aη is the inclusion of values into computations (i.e., inclusion of elements of the
database A into the set of views of the database).A It is the isomorphism

: .= →A A Ais TAη

• ∗f is the ‘equivalent’ extension of a database mapping : ,→f A TB ‘from values
to computations’ (programs correspond to call-by-value parameter passing) to a
mapping ‘from computations to computations’ (programs correspond to call-
byname), such that holds 1: ,∗ −→ D DB Af Tf fμ η so .∗f f≈

Thus, in DB category, call-by-value (:)→f A TB and call-by-name
(:)∗ →f TA TB paradigms of programs are represented by equivalent morphisms

.∗f f≈ Notice that in skeletal category skDB (which is equivalent to),DB all
morphisms correspond to the call-by-name paradigm. This is because each arrow is a
mapping from computations into computations (which are closed objects).

The basic idea behind the semantic of programs (Moggi, 1989) is that a program denotes
a morphism from A (the object of values of type)A to TB (the object of computations
of type),B according to the view of ‘programs as functions from values to
computations’, so that the natural category for interpreting programs (in our case, a
particular equivalent ‘computation’ database mappings of the form 1 : ,→D� Bf f A TBη
derived from a database mapping : ,→f A B such that 1)f f≈ is not a DB category but
it is a Kleisli category .TDB

In our case, the Kleisli category is a perfect model only for a subset of database
mappings in :DB exactly for every view-mapping (i.e., query) : →Aq A TA which is
just an arrow in Kleisli category () : .→Aq A Aθ For a general database mapping

: →f A B in ,DB only its (equivalent to)f ‘computation extension’ : →DB f A TBη
is an arrow () : →DB f A Bθ η in the Kleisli category. Consequently, the Kleisli category
is a model for database mappings up to the equivalence ‘ ’.≈

It means that, generally, database mappings are not simply programs from values into
computations. In fact, the semantics of a database mapping between any two objects A
and B can be specified as follows: for some set of computations (i.e., query-mappings)
over ,A we have the same equivalent (in the sense that these programs produce the same
computed value (view)) set of computations (query-mappings) over :B it is
fundamentally an equivalence of computations. This is a consequence of the fact that
each database mapping (which is not a function) from A into B is naturally
bidirectional, i.e., it is a morphism : →f A B and its equivalent reversed morphism

: →invf B A together [explained by the duality property OP=DB DB (Majkić, 2008)].
Let us define this equivalence formally:

Definition 9: Each database mapping : →h A B is an equivalence of programs
(epimorphisms), (()) :�Ah J h A THτ \ and 1(()) :−� inv

Bh J h B THτ \ (τ and 1−τ
are natural transformations of a categorial symmetry), where H generates a closed object
�h (i.e.,)= �TH h and ,A Bh h h≈ ≈ such that computations of these two programs

(arrows of Kleisli category)TDB are equal, i.e., 1 1((=A Bh h∂) ∂).

We can also provide an alternative model for equivalent computational extensions of
database mappings in DB category:

 524 Z. Majkić and B. Prasad

Proposition 5: Denotational semantics of each mapping ,f between any two database
instances A and ,B is given by the unique equivalent ‘computation’ arrow 1 D� Bf fη
in coalgT from the monadic -coalgebraT (,)AA η into a cofree monadic -coalgebraT
(,),B

CTB μ 1 : (,) (,),B→ C
Af A TBη μ or , dually, by the unique equivalent arrow

1 () B=� D Dinv inv inv
inv Bf f fη η from the free monadic -algebraT (,)BTB μ into the

monadic -algebraT (,).A
invA η

Proof: In fact, =D DC
B Af Tfμ η holds. It is because j,= = =� � �∩ ∩C C

TBB B TBid f f fμ μ and
j j j j j �= = =∩ ∩ ∩ ∩ATf Tf TA Tf TTA Tf fη (because �f is a closed object). �

Note that each view-map (query) : →Aq A TA is just equal to its denotational semantics
arrow in ,coalgT : (,) (,).B→ C

AAq A TAη μ
It is well-known that for a Kleisli category there exists an adjunction

, , ,T T T TF G< >η μ such that we obtain the same monad (, ,),T η μ such that
, , .= = =T T T T T TT G F G Fμ ε η η Let us see now how the Kleisli category TDB is

‘internalised’ into the DB category.
Proposition 6: The Kleisli category TDB of the monad (, ,)T η μ is isomorphic to DB
category, i.e., it may be ‘internalised’ in DB by the faithful forgetful functor

0 1(,) : ,= →TK K K DB DB such that 0K is an identity function and 1 1,−�K φθ
where, for any two objects A and :B
• : (,) (,)TDB A TB DB A Bθ is Kleisli
• : (,) (,),DB A TB DB A Bφ such that ()() _−=− Dinv

codφ η is DB category bijection
respectively.

We can generalise a ‘representation’ for the base DB category (instead of usual Set
category): a ‘representation’ of functor K is a pair , ,ϒ ϒ< >ϕ is the total object and

_: (,)ϒTDB Kϕ is a natural isomorphism, where the functor
_: (,) :ϒ →T TDB DB DBϕ defines ‘internalised’ hom-sets in ,TDB i.e.,

0 (,) ,ϒϒ �TDB B TB 1 (,) .ϒϒ �TDB f id Tf⊗
Proof: Let us prove that φ is really a bijection in .DB For any program morphism

: →f A TB we obtain () := →Dinv
Bf f A Bφ η and, vice versa, for any : →g A B its

inverse 1() ,− � DBg gφ η thus , 1() () () ()− = = =D D D D Dinv inv
B B B B Bg g g gφφ η η η η η

= =DBid g g (because Bη is an isomorphism), i.e., 1−φφ is an identity function. Also
1 1() () () () ,− −= = = = =D D D D D Dinv inv inv

TBB B B B Bf f f f id f fφ φ φ η η η η η i.e., 1−φ φ is an
identity function, thus φ is a bijection.
Let us demonstrate that K is a functor: For any identity arrow () := →T Aid A Aθ η in

TDB we obtain 1 1() (()) ()−= = = =Dinv
AA A A ATK id idφθ θ η φ η η η (because Aη is an

isomorphism). For any two arrows : →Tg B C and : →Tf A B in Kleisli category, we

obtain, 1 1 1 1() ((() ())− −=D D DT T C T TK g f K T g fθ μ θ θ (from def. Kleisli category)
1(())−= D DC Tg fφθ θ μ (where 1() : ,T

− →�g g B TCθ 1() :)T
− → =�f f A TBθ φ

()D Dinv
Bg fη (it is easy to verify in DB that)= =D D D D D D Dinv inv inv

C B BCTg f g f g fμ η η η
1 1 1 1 1 1(()) (()) (()) () ().T T T
− − −= =D Dg f K f K g K fφθ θ φθ θ θθ

Thus, each arrow : →Tf A B in TDB is ‘internalised’ in DB by its representation
1 1 1() () () : ,T T T

− −= = →� Dinv
Bf K f f f A Bφθ η θ where 1() :− →Tf A TBθ is a program

equivalent to the database mapping : ,→f A B i.e., 1() .−
Tf f≈θ

 Kleisli category and database mappings 525

K is a faithful functor, in fact, for any two arrows , : →T Tf h A B in ,TDB
1 1() ()T T=K f K h implies :=T Tf h from 1 1() ()T T=K f K h we obtain

1 1() (),T T
− −=f hφθ φθ if we apply a bijection 1−θφ we obtain 1 1 1() (),− − −=T Tf hθφ θφ φθ

i.e., 1 1() (),− −=T Tf hθθ θθ i.e., =T Tf h 1(−θθ and 1−φ φ are identity functions). Let us
prove that K is an isomorphism: from the adjunction , , , : ,→T T T T

TF G DB DB< >η μ
where 0

TF is identity, 1 1,− −�TF θφ we obtain that =D TDBTF K I and ,=D DBTK F I
thus, the functor K is an isomorphism of DB and Kleisli category .TDB �

Remark: It is easy to verify that a natural isomorphism : →DBI Tη of the monad
(, ,)T η μ is equal to the natural transformation : .→ TK Gη (consider that

: →T TG DB DB is defined by, 0 0=TG T and for any : →Tf A B in ,TDB
1 1() () :).− →� DT BT TTG f f TA TBμ θ

Thus, the functor TF has two different adjunctions: the universal adjunction
, , ,T T T TF G< >η μ which gives the same monad (, ,)T η μ and this particular (for DB

category only) isomorphism’s adjunction , , ,T
I IF K< >η μ which gives banal identity

monad. We are now ready to define the semantics of queries in DB category and the
categorical definition of query equivalence. This is important in the context of the
Database integration/exchange and for the theory of query-rewriting (Halevy, 2000).

When we define a mapping (arrow, morphism) : →f A B between two databases A
and ,B implicitly we are defining the ‘information flux’ ,�f i.e., the set of views of A
‘transmitted’ by this mapping into .B Thus, in the context of query-rewriting, we
consider only queries (i.e., view-maps) whose resulting view (observation) belongs to the
‘information flux’ of this mapping. Consequently, given any two queries, : →iAq TAA
and : ,→jBq B TB they have to satisfy (w.r.t. query rewriting constraints) the condition

1() �
iAq f∂ ∈ (the 1()iAq∂ is just a resulting view of this query) and 1() .�jBq f∂ ∈ So, the

well-rewritten query over ,B : ,→jBq B TB such that it is equivalent to the original
query, i.e., ,j iB Aq q≈ must satisfy the condition 1 1() () .= �∂ ∂ ∈j iB Aq q f

Now we can give the denotational semantics for a query-rewriting in a data
integration/exchange environment:

Proposition 7: Each database query is a (non-monadic) -coalgebra.T Any morphism
between two -coalgebrasT : (,) (,)→ jiA Bq qf A B defines the semantics for relevant
query-rewriting, when 1() .�iAq f∂ ∈

Proof: Consider the following commutative diagram, where vertical arrows are
-coalgebras :T

Figure 3 Queries

 526 Z. Majkić and B. Prasad

The morphism between two -coalgebrasT : (,) (,)→ jiA Bq qf A B means that the
commutativity := →D Dj iB Aq qf Tf TBA is valid and from duality property we obtain

.= D Di i
inv

B Aq qTf f Consequently, for a given mapping : →f A B between databases
A and B and for every query iAq such that 1() �

iAq f∂ ∈ (i.e., j),�iAq f⊆ we can have an
equivalent rewritten query jBq over a data base .B In fact j j j k j= =∩ ∩j i i

inv
B A Aq q qfTf

because of the fact j �
iAq f⊆ and k j .= = �invf Tf f Thus .j iB Aq q≈ �

5 Conclusions

In this paper, we presented some fundamental properties and semantics for database
mappings in the DB category. Majkic (2009) introduced the categorial (functors)
semantics for two basic database operations: matching and merging (and data federation)
and defined the algebraic database lattice. He has also shown that DB is concrete, small
and locally finitely presentable (lfp) category and DB is also monoidal symmetric
V-category enriched over itself. Based on these results, he developed a metric space and a
subobject classifier for DB category and shown that it is a weak monoidal topos. In this
paper, we considered some Universal algebra considerations and defined a categorical
coalgebraic semantics for GLAV database mappings based on monads.

It was shown that a categorial semantics of database mappings can be given by the
Kleisli category of the power-view monad ,T that is, it was shown that Kleisli category
is a model for database mappings up to the equivalence ≈ of morphisms in DB
category. It was demonstrated that Kleisli category is isomorphic to theDB category and
that call-by-values and call-by-name paradigms of programs (database mappings) are
represented by equivalent morphisms. Moreover, it was shown that each database query
(which is a program) is a monadic -coalgebraT and that any morphism between two

-coalgebrasT defines the semantics for the relevant query-rewriting.

References
Asperti, A. and Longo, G. (1991) Categories, Types and Structures, MIT Press.
Buneman, P., Naqui, S., Tanen, V. and Wong, L. (1995) ‘Principles of programming with complex

objects and collection types’, Theoretical Computer Science, Vol. 149, No. 1.
Cali, A., Calvanese, D., Giacomo, G. and Lenzerini, M. (2003) ‘Reasoning in data integration

systems: why LAV and GAV are siblings’, Proceedings of the 14th International Symposium
on Methodologies for Intelligent Systems, ISMIS 2003, Springer 2871, pp.282–289.

Cohn, P.M. (1965) Universal Algebra, Harper and Row, London.
Halevy, A.Y. (2000) ‘Theory of answering queries using views’, SIGMOD Record, Vol. 29, No. 4,

pp.40–47.
Kelly, G.M. and Power, A.J. (1993) ‘Adjuntions whose counits are coequalizers, and presentations

of finitary enriched monads’, J. Pure Appl. Algebra, Vol. 89, pp.163–179.
Lambek, J. and Scott, P. (1986) Introduction to Higher Order Categorical Logic, Cambidge

University Press.
Lane, S.M. (1971) Categories for the Working Mathematician, Springer-Verlag.
Lenzerini, M. (2002) ‘Data integration: a theoretical perspective’, in Proc. of the 21st

ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002),
pp.233–246.

 Kleisli category and database mappings 527

Majkić, Z. (1998) ‘Categories: symmetry, n-dimensional levels and applications’, PhD Thesis,
University ‘La Sapienza’, Roma, Italy.

Majkić, Z. (2003a) ‘The category-theoretic semantics for database mappings’, Technical Report 14-
03, University ’La Sapienza’, Roma, Italy.

Majkić, Z. (2003b) ‘Fixpoint semantics for query answering in data integration systems’, AGP03 –
8th Joint Conference on Declarative Programming, Reggio Calabria, pp.135–146.

Majkić, Z. (2008) ‘Abstract database category based on relational-query observations’,
International Conference on Theoretical and Mathematical Foundations of Computer Science
(TMFCS-08), Orlando FL, USA, 7–9 July 2008.

Majkić, Z. (2009a) ‘Algebraic operators for matching and merging of relational databases’,
International Conference in Artificial Intelligence and Pattern Recognition (AIPR-09),
Orlando FL, USA, 13–16 July.

Majkić, Z. (2009b) ‘Induction principle in relational database category’, Int. Conference on
Theoretical and Mathematical Foundations of Computer Science (TMFCS-09), Orlando FL,
USA, 13–16 July.

Moggi, E. (1989) ‘Computational lambda-calculus and monads’, in Proc. of the 4th IEEE Symp. on
Logic in Computer Science (LICS’89), pp.14–23.

Moggi, E. (1991) ‘Notions of computation and monads’, Inf. and Comp., Vol. 93, No. 1, pp.55–92.
Plotkin, G.D. and Power, A.J. (2001) ‘Adequacy for algebraic effects’, Proc. FOSSACS 2001,

LNCS, Vol. 2030, pp.1–24.
Walder, P. (1990) ‘Comprehending monads’, Proceedings of ACM Conference on Lisp and

Functional Programming, Nice.

