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Abstract: This paper presents the semantics of database mappings in the 
relational database (DB) category, based on the power-view monad T and 
monadic algebras. The semantics can be interpreted as a computational model 
of view-based mappings between databases, where each query (view-mapping) 
can be seen as a program, so that we can use the paradigm ‘from values to 
computations’. The objects in this category are the database-instances. The 
morphisms of such DB category are used in order to express the semantics of 
view-based global and local as view (GLAV) mappings between relational 
databases such as those used in data integration systems. Consequently, the 
semantics of database mappings in this DB category are defined based on the 
power-view monad T and the Kleisli category for databases, which can be 
‘internalised’ in this basic DB category. 
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1 Introduction 

The notion of a monad is one of the most general mathematical notions. For instance, 
every algebraic theory, that is, every set of operations satisfying equational laws, can be 
seen as a monad. Moggi (1989, 1991) stressed the computational significance of monads 
and explained how they may help understand programs “as functions from values to 
computations”. The idea of Moggi, roughly, is to give denotational semantics to 
computations and it presents an alternative to the conceptual gap between the intensional 
(operational) and the extensional (denotational) approaches to the semantics of 
programming languages. 

The idea of monad as a model for computations, based on an endofunctor T  for a 
given category, is that for each set of values of type ,A  TA  is the object of computations 
of ‘type ’.A  Let us explain the way we can use such denotational semantics, based on 
monads, in the case of relational databases. It is well-known that the relational databases 
are complex structures, defined by some sets of n-ary relations. In addition, the mappings 
between the relational databases are based on some sets of view-mappings between a 
source database A  and a target database .B  We consider the views as a universal 
property for databases (i.e., possible observations of the information contained in some 
database). 

We assume that a view of a database A  as the relation (set of tuples) obtained by a 
‘Select-Project-Join + Union’ (SPJRU) query ( )xq  where x  is a list of attributes of this 
view. We denote by LA  the set of all such queries over a database A  and by LA ≈  the 
quotient algebra obtained by introducing the equivalence relation ,≈  such that 

( ) ( )x xq q'≈  if both queries result in the same relation (view). Thus, a view can be 
equivalently considered as a term of this quotient algebra LA ≈  with carrier set of 
relations in A  and a finite arity of their operators, whose computation returns a set of 
tuples of this view. If this query is a finite term of this algebra then it is called a ‘finitary 
view’. Note that a finitary view can have an infinite number of tuples also. 

Example: Let a database A  be a single n-ary (with 1n ≥  a finite integer) relation .R  
Then any relational query formula ( )xq  of finite length over this relation R  will give a 
single (possibly empty) relation qr  with finite number of attributes. That is, the result is 
the view over A  obtained by this query ( ).xq  If we apply all possible query formulae 
(that are finite syntax SPJRU expressions) to this relation then we obtain the set TA  of 
all views over this database. If the domain of values of this database is finite, thus the 
relation R has a finite number of tuples, then TA  is a finite set of finite relations (views). 
If the domain is infinite and R  is the n-ary Cartesian product of this domain, then R  has 
an infinite number of tuples. In that case, any projection (i.e., simple finite query) over R  
will be a relation (i.e., obtained view) with a finite number of attributes but with an 
infinite number of tuples. In that case, the set TA  is an infinite one (for example, the 
subset of views with only one attribute and only one tuple, for each value of this infinite 
domain). 

DB  category, a base category for the semantics of databases and mappings between 
them, is different from the Set category. It is a computational model of view-based 
mappings between the databases, where each query (view-mapping) can be seen as a 
program, so that we can use the paradigm ‘from values to computations’. The objects in 
this category are the database-instances (a database-instance is a set of n-ary relations, 
i.e., a set of relational tables as in standard RDBs). The morphisms in DB  category are 
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used in order to express the semantics of view-based global and local as view (GLAV) 
mappings between relational databases such as those used in data integration systems. 
Such morphisms in this DB  category are not functions but have complex tree structures. 
Such an instance level database category DB  has been introduced first time in a 
technical report (Majkić, 2003a) and is also used (Majkić, 2003a). General information 
about categories is available in classic books (Lane, 1971) while more information about 
this particular database category ,DB  with the set of its objects DBOb  and set of its 
morphisms ,DBMor  is recently presented (Majkić, 2008). In this paper, we emphasise 
only some basic properties of this DB category, in order to make this paper more self 
contained. 

Every object (denoted by , , , )…A B C  in this category is a database instance, 
composed of a set of n-ary relations , 1,2,= …ia A i∈  that are also called ‘elements of 

’.A  The power-view operator T  (as defined by Majkic, 2003a), with the domain and 
codomain equal to the set of all database instances, is such that for any object (database) 

,A  the object TA  denotes a database composed of the set of all views of .A  The object 
,TA  for a given database instance ,A  corresponds to the quotient algebra ,LA ≈  where 

carrier is a set of equivalence classes of closed terms of a well-defined formulae of a 
relational algebra, ‘constructed’ by -contructorsRΣ  (relational operators in SPJRU 
algebra: select, project, join and union) and symbols (attributes of relations) of a database 
instance ,A  and constants of the attribute domains. For every object ,A  A TA⊆  and 

=TA TTA  are true, i.e., each (element) view of the database instance TA  is also an 
element (view) of a database instance .A  

Closed object in DB  is a database A  such that .=A TA  Note that even when A  is 
finitary (i.e., it has a finite number of relations) but having at least one relation with an 
infinite number of tuples then TA  has an infinite number of relations (views of )A  and 
thus TA  can be an infinitary object. It is obvious that when a domain of constants of a 
database is finite then both A  and TA  are finitary objects. 

From a behavioural point of view that is based on observations, we can define 
equivalent (categorically isomorphic) objects (database instances) as follows: each arrow 
(morphism) is composed of a number of ‘queries’ (view-maps) and each query may be 
seen as an observation over some database instance (object of ).DB  Thus, we can 
characterise each object in DB  (a database instance) by its behaviour according to a 
given set of observations. Thus, the databases A  and B  are equivalent (bisimilar) if they 
have the same set of observable internal states, i.e., when TA  is equal to :TB  

 iff  .=A B TA TB≈  

This equivalence relation corresponds to the isomorphism of objects in DB  category 
(Majkić, 2008). It is demonstrated that this powerview closure operator T  can also be 
extended to arrows of DB  category and hence it is an endofunctor and defines a monad 
(see Section 2). 

It is already demonstrated (Majkić, 2003a; Majkić, 2008) that the basic properties of 
this database category DB  as: its symmetry property (bijective correspondence between 
arrows and objects), and also its duality property (DB  is equal to its dual )OPDB  so that 
each limit is a colimit as well (for example, the product is also coproduct, the pullback is 
also pushout, empty database ⊥0 is the zero object, that is, it is both initial and terminal 
object, etc.). 
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Consequently, the product ×A B  of the databases A  and B  is equal to their 
coproduct +A B  and the semantics for them is that we are not able to define a view by 
using the relations of both the databases. That is, these two databases have independent 
DBMS for query evaluation. For example, the creation of an exact copy of a database A  
in another -serverDB  corresponds to the database .+A A  

Majkić (2009) considered some relationships of DB  and standard set category and 
introduced the categorial (functors) semantics for two basic database operations namely 
matching ⊗ and merging ⊕ such that for any two databases A  and , ⊗ = ∩B A B TA TB  
and ( ).⊕ = ∪A B T A B  He also defined the algebraic database lattice and shown that 
DB  is concrete, small and is a locally and finitely presentable (lfp) category. Moreover, 
he has shown that DB  is V-category enriched over itself and developed a metric space 
and a subobject classifier for this category and demonstrated that it is a weak monoidal 
topos. 

In this paper, we presented denotational semantics for database mappings based on 
the power-view endofunctor ,T  monadic -(co)algebrasT  and their computational 
properties in DB  category, and Kleisly category of a monad T  that is used for 
categorical semantics of database mappings and database queries. The advantage of this 
approach is to have denotational semantics for database mappings instead of using a 
standard first-order logic approach that is based on GLAV semantics (Lenzerini, 2002; 
Cali et al., 2003). Practical applications can be developed from this approach by having a 
graphical tool with a high-level interface for the mappings between databases with clear 
and formal denotational semantics. 

The rest of the paper is organised as follows: Section 2 presents a brief introduction to 
DB  category and its power-view monad T  [based on Majkić (2003a, 2008)]. Section 3 
considers universal algebra theory for databases and monadic coalgebras for database 
mappings. Finally, Section 4 presents the categorial semantics of database mappings, 
based on Kleisly category of the monad .T  

In what follows we will use the special symbol � in order to sign the end of proofs 
and examples. 

2 Monad over DB category 

In this section, we present a brief introduction to DB  category, based on the existing 
works (Majkić, 2003a, 2008). We assume that the domain of every database is an 
arbitrary large and finite set by default. This assumption is reasonable for all real 
applications. We define a universal database instance ,ϒ  as the union of all database 
instances, i.e., { }, .ϒ = DBi ia a A A Ob∈ ∈  ϒ  is the top object of this category, such that 

,ϒ ϒ=T  because every view ϒv T∈  is also a database instance and thus ,ϒv ∈  vice 
versa, every element ϒr ∈  is also a view of ,ϒ  thus .ϒr T∈  

Every object (database) A  contains an empty relation ⊥ as well. The object 
composed only by this empty relation is denoted by ⊥0 and we have that 0 0 { }.⊥ =⊥ = ⊥T  
Any empty database (i.e., a database with only empty relations) is isomorphic to this 
bottom object ⊥0. 

Morphisms of this category are all possible mappings between database instances 
based on views. Elementary view-map for a given database A  is given by a SPCU query 

: .T= →iAi
qf A A  Let us denote the extension of the relation obtained from this query 
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iAq  by .if  Suppose that 1, ,…i ikr r A∈  are the relations used for the computation of this 
query, and that the correspondent algebraic term liq  is a function (it is not a 

-coalgebra)T  l : ,T→k
iq A A  where kA  is thk  Cartesian product of .A  Then, 

l ( )1, , .= …iA i i ik
qq r r  Unlike the algebra term liq  which is a function, a view-map 

: T→iAq A A  is not a function but a T-coalgebra. 
Consequently, an atomic morphism : ,→f A B  from a database A  to database ,B  is 

a set of such view-mappings and generally it is not a function, making the DB  category 
different from the Set category where morphisms are functions. 

We can introduce two functions, 0 1, : ( )ϒ→ PDBMor∂ ∂  (which are different from 
standard category functions , : ),→DB DBdom cod Mor Ob  such that for any view map 

: ,T→iAq A A  we have that ( )0 1( ) , ,= …iA k
q r r A∂ ⊆  is a subset of relations of A  used 

as arguments by this query iAq  and 1( ) { },=iAq v∂  where v TA∈  is the resulting view of 
a query .iAq  Here P  is a power set operation. In fact, these two functions are such that 
for any morphism : →f A B  between databases A  and ,B  which is a set of  
view-mappings iAq  such that ,iAq B∈  we have that 0 ( )f A∂ ⊆  and 

1( ) .∩f TA B B∂ ⊆ ⊆  Thus, we have: 

0 0 1 1( ) ( ) ( ) , ( ) ( ) ( )= = = =∪ ∪i i

A Ai i

A A
q f q f

f q dom f A f q cod f B
∈ ∈

∂ ∂ ⊆ ∂ ∂ ⊆  

Based on atomic morphisms (sets of view-mappings) which are complete arrows  
(c-arrows), we obtain that their composition generates tree-structures that can be 
incomplete (p-arrows) in the way that for a composed arrow := →h g f A Cο  of two 
atomic arrows : →f A B  and : ,→g B C  we can have situations where 0 0( ) ( )f h∂ ⊂ ∂  
and the set of relations in 0 0 0( ) ( ) ( )−h f g∂ ∂ ⊂ ∂  are denominated ‘hidden elements’. 

Definition 1 (Majkić, 2008): The following BNF defines the set DBMor  of all morphisms 
in :DB  

p-arrow: = c-arrow | c-arrow ο c-arrow (for any two c-arrows : →f A B  and 
: )→g B C  

morphism:= p-arrow | c-arrow ο p-arrow (for any p-arrow : →f A B  and c-arrow 
: )→g B C  

whereby the composition of two arrows, f  (partial) and g  (complete), we obtain the 
following p-arrow (partial arrow) := →h g f A Cο  

{ }{ }
{ }

0 1

1 0

& ( ) ( )

& ( ) { } & ( )

1 0 0

0

{ }

{ ( )}

( ) ( ) ( ) & ( ) ( ) 0

( ) & ( ) ( ) 0 ,

≠

=

= =

= ≠

= ≠

∩

∩

∩

∪

∪
Bj Bj

Ai Ai Bj

Bj
q q q f

Ai
q f  q v  v q

Bj Ai Ai Bj Bj Bj

Bj Bj Bj

h g f q

q tree

q q tree q q q g q f

q tree q g q f

∈ ∂ ∂ ∅

∈ ∂ ∈ ∂

ο ο

ο

 ο ∂ ⊆ ∂ ∈ ∂

∈ ∂

 

where ( )Aiq tree  is the tree of the morphisms f below .Aiq  
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We define the semantics of any morphism : →h A C  as an ‘information transmitted 
flux’ from the source to the target object. An ‘information flux’ (denoted by �)h  is a set 
of views (as a result, it is an object in DB  category as well) which is ‘transmitted’ by a 
mapping. 

In order to explain this concept of ‘information flux’, let us consider a simple 
morphism : →f A B  from a database A  into a database ,B  composed of only one view 
map based on a single query 1 1( ) ( ), , ( ),←x … n nq R u R u  where 0n ≥  and iR  are the 
names of the relations (at least one relation) that are in A  or built-in predicates (e.g., ≤, 
=, etc.) and q  is the name of a relation that is not in .A  Then, for any tuple c for which 
the body of this query is true, ( )cq  must also be true, that is, this tuple from a database 
A  ‘is transmitted’ by this view-mapping into one relation of database .B  The set (n-ary 
relation) Q  of all tuples that satisfy the body of this query will constitute the whole 
information ‘transmitted’ by this mapping. The ‘information flux’ �f  of this mapping is 
the set ,TQ  that is, the set of all views (possible observations) that can be obtained from 
the transmitted information of this mapping. 

Definition 2 (Majkić, 2008): We define the semantics of mappings by function 
: ,→DB DBTB Mor Ob  which, given any mapping morphism : ,→f A B  returns with the 

set of views (‘information flux’) that are really ‘transmitted’ from the source to the target 
object. 

1 for an atomic morphism, ||( ) {|| | }=� � i iA AT
q q ff B f T ∈  

2 let : →g A B  be a morphism with a flux ,�g  and : →f B C  an atomic morphism 
with flux �f  defined in point 1, then k ( ) .T= � �� ∩f  g B f  g f  gο ο   

Thus, we have the following fundamental property: 

Proposition 1: Any mapping morphism : →f A B  is a closed object in ,DB  i.e., 
.=� �f  Tf  

Proof: This proposition can be proved by structural induction; each atomic arrow is a 
closed object || ||{|| | }) {|| | }( ( ,= = = ��

i i i iA A A Aq q q qf f fTf T T T∈ ∈  each arrow is a 
composition of a number of complete arrows, and the intersection of closed objects is 
always a closed object. � 

Remark: The ‘information flux’ �f  of a given morphism (mapping) : →f A B  is an 
instance-database as well (its elements are the views defined by the formulae above), 
thus, an object in DB  as well. 

Proposition 2 (Majkić, 2008): The following properties for morphisms are valid: 

1 each arrow : ,\f A B  such that =�f  TB  is an epimorphism [epic arrow (Lane, 
1971)] 

2 each arrow : ,f A B  such that =�f  TA  is a monomorphism [monic arrow (Lane, 
1971)] 

3 each monic and epic arrow is an isomorphism, thus two objects A  and B  are 
isomorphic iff ,=TA TB  that is, �A B  iff .=TA TB  
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Note that in the standard set category, where the objects of the category are sets and the 
arrows are functions between them, monic and epic arrows are injective and surjective 
functions respectively. However, in this DB  category, the arrows are not functions but 
complex trees of functions. 

Note that between any two databases A  and B  there is at least an ‘empty’ arrow 
: →A Cφ  such that 0

0 1( 0 ) ( 0 ) 0 { } .= = = =�∂ ∂ ⊥ ⊥  We have that A⊥ ∈  for any 
database A  (in DB  all objects are pointed by ⊥ relation), so that any arrow : →f A B  
has as one component the empty mapping  (thus, also arrows are pointed by 0 ).  

If f  is epic then ,TA TB⊇  if it is monic then .TA TB⊆  Thus we have an 
isomorphism of two objects (databases), �A B  iff .=TA TB  

We define an ordering ≺  between databases by ≺A  B  iff .TA TB⊆  
Thus, for any database A  we have that ,A TA  i.e., there is an isomorphic  

arrow 0 1{ | ( ) ( ) { }= = =i i iA A AA
q q qis v∂ ∂  and }: →v A A TA∈  and its inverse 
0 1{ | ( ) ( ) { }= = =i i i

inv
TA TA TAA

q q qis v∂ ∂  and }: }: ,→v A A TA TA A∈ ⊆  such that their 
flux is j k .= =inv

A Ais is TA  
The following duality theorem shows that for any commutative diagram in DB  there 

is also the same commutative diagram composed by the equal objects and inverted 
equivalent arrows: this ‘bidirectional’ mappings property of DB  is a consequence of the 
fact that the composition of arrows is semantically based on the set-intersection 
commutativity property for ‘information fluxes’ of its arrows. Thus, any limit diagram in 
DB  has also its ‘reversed’ equivalent colimit diagram with equal objects, any universal 
property has also its equivalent couniversal property in .DB  

Theorem 1 (Majkić, 2008): there exists the controvariant functor 
0 1( , ) := →S S S DB DB  such that: 

1 0S  is the identity function on objects 

2 for any arrow in ,DB  : →f A B  we have 1 ( ) : ,→S f B A  such that  
1 ( ) ,� invS f f  where invf  is (equivalent) reversed morphism of f (i.e., k ),= �invf f  

1 ( )−= D Dinv inv
BAf is Tf is  with 

0 1( ) ( ) { } &

( ) { : }
= =

→
�

� ∪ j

TB TBj j

inv
TB

q q v v f

qTf ATB T
∂ ∂ ∈ 

 

3 the category DB  is equal to its dual category .OPDB  

Let us extend the notion of the type operator T  into the notion of the endofunctor in 
DB  category: 

Theorem 2 (Majkić, 2008): There exists the endofunctor 0 1( , ) : ,= →T T T DB DB  such 
that: 

1 for any object ,A  the object component 0T  is equal to the type operator ,T  i.e., 
0 ( ) �T A TA  

2 for any morphism : ,→f A B  the arrow component 1T  is defined by: 
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0 1

1

( ) ( ) { } &

( ) ( ) { : }
= =

= →
�

� ∪ i

TA TAi i

TA

q q v v f

qT f T f A BT T
∂ ∂ ∈ 

 

3 endofunctor T  preserves properties of arrows, i.e., if a morphism f  has a property 
P  (monic, epic, isomorphic), then also ( )T f  has the same property: let ,monoP  epiP  
and isoP  are monomorphic, epimorphic and isomorphic properties respectively. 

Proof: it can be found in the paper by Majkić (2008) � 

The endofunctor T  is a right and left adjoint to identity functor ,DBI  i.e., ,� DBT I  thus 
we have for the equivalence adjunction , , ,C

DBT I η η< > the unit : �C
DBT Iη  such that 

for any object A  the arrow ( ) : ,→�C
AA AA is TAη η ≡  and the counit : �DBI Tη  such 

that for any A  the arrow ( ) : →� AA AA is TAη η ≡  are isomorphic arrows in DB  (by 
duality theorem, it is true that ).=C invη η  

The function ( ) ( )1 : → → →T A B TA TB  is not a higher-order function (arrows in 
DB  are not functions): thus, there is no corresponding monad-comprehension for the 
monad ,T  which invalidates the thesis (Walder, 1990) that ‘monads ≡  
monad-comprehensions’. It is only valid that ‘monad-comprehension ⇒ monads’. 

We have already seen that the views of some database can be seen as its observable 
computations: to obtain an expressive power of computations in the category ,DB  we 
need categorial computational properties, as known, based on monads. 

Proposition 3: The power-view closure 2-endofunctor 0 1( , ) := →T T T DB DB  defines 
the monad ( , , )T η μ  and the comonad ( , , )C CT η μ  in ,DB  such that : �DBI Tη  and 

: �C
DBT Iη  are natural isomorphisms, while : →TT Tμ  and : →C T TTμ  are equal 

to the natural identity transformation : →Tid T T  (because ).=T TT  

Proof: It is easy to verify that all commutative diagrams of the monad 
, )A=D D D D DA A A TA T A AT id Tμ μ μ η μ η  and the comonad are diagrams composed by 

identity arrows. Notice that by duality we obtain .= = inv
TA A ATη η μ  � 

3 Categorial symmetry and behavioural equivalence 

Let us consider the problem of how to define equivalent (categorically isomorphic) 
objects (database instances) from a behavioural point of view based on observations. As 
we can see, each arrow (morphism) is composed by a number of ‘queries’ (view-maps) 
and each query may be seen as an observation over some database instance (object of 

).DB  Thus, we can characterise each object in DB  (a database instance) by its 
behaviour according to a given set of observations. Indeed, if one object A  is considered 
as a blackbox, the object TA  is only the set of all observations on .A  So, given two 
objects A  and ,B  we are able to define the relation of equivalence between them based 
on the notion of the bisimulation relation. If the observations (resulting views of queries) 
of A  and B  are always equal, independent of their particular internal structure, then 
they look equivalent to an observer. 

In fact, any database can be seen as a system with a number of internal states that can 
be observed by using query operators (i.e., programs without side-effects). Thus, 
databases A  and B  are equivalent (bisimilar) if they have the same set of observations, 
i.e., when TA  is equal to :TB  
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Definition 3 (Majkić, 2008): The relation of (strong) behavioural equivalence ′≈′ between 
objects (databases) in DB  is defined by: 

=A B iff  TA TB≈  

the equivalence relation for morphisms is given by, .=� �f g iff  f g≈  

This relation of behavioural equivalence between objects corresponds to the notion of 
isomorphism in the category DB  (see Proposition 2). This introduced equivalence 
relation for arrows ,≈  may be given by a (interpretation) function : →T DB DBB Mor Ob  
(see Definition 2) such that ≈  is equal to the kernel of ,TB  ),= TkerB≈  i.e., this is a 
fundamental concept for categorial symmetry (Majkić, 1998): 

Definition 4 (Majkić, 1998), categorial symmetry: Let C  be a category with an 
equivalence relation ×C CMor Mor≈  ⊆   for its arrows (equivalence relation for objects 
is the isomorphism )×C COb Ob  ⊆   such that there exists a bijection between 
equivalence classes of ≈  and ,∼  so that it is possible to define a skeletal category C  
whose objects are defined by the imagine of a function : →T C CB Mor Ob  with the 
kernel ,=TkerB ≈  and to define an associative composition operator for objects *, for 
any fitted pair Dg f  of arrows, by ( ) ( ) ( ).∗ = DT T TB g B f B g f  

For any arrow in ,C  : ,→f A B  the object ( )TB f  in ,C  denoted by ,�f  is 
denominated as a conceptualised object. 

Remark: This symmetry property allows us to consider all the properties of an arrow (up 
to the equivalence) as properties of objects and their composition as well. Notice that any 
two arrows are equal if and only if they are equivalent and have the same source and the 
target objects. 

In symmetric categories, iff  .� �f  g  f  g≈  
Let us introduce, for a category C  and its arrow category ,↓C C  an encapsulation 

operator : ,↓→C C CJ Mor Ob  that is, a one-to-one function such that for any arrow 
: , ( ) , ,→ =f A B J f A B f< >  is its correspondent object in ,↓C C  with its inverse ψ  

such that ( , , ) .=A B f f< >ψ  
We denote the first and the second comma functorial projections by 
, : ( ) →↓st ndF S C C C  (for any functor : →F C D  between categories C  and ,D  we 

denote its object and arrow component by 0F  and 1),F  such that for any arrow 
1 2( ; ) : , , , ,′ ′→k k A B f A B g< > < >  in ↓C C  (such that 2 1=D Dk f g k  in ),C  we have 

that 0 1
1 2 1( , , ) , ( ; )= =st stF A B f A F k k k< >  and 0 1

1 2 2( , , ) , ( ; ) .= =nd ndS A B f B S k k k< >  
We denote the diagonal functor by : ( ),→ ↓C C C▲  such that for any object A  in a 

category ,C  0 ( ) , , .= AA A A id< >▲  An important subset of symmetric categories are 
conceptually closed and extended symmetric categories, as follows: 

Definition 5 (Majkić, 1998): Conceptually closed category is a symmetric category C  
with a functor 0 1( , ) : ( )= →↓e eeT T T C C C  such that 0 ,=e TT B ψ  i.e., 0 ,=T eB T J  with a 
natural isomorphism : ,D CeT  Iϕ ▲  where CI  is an identity functor for .C  C  is an 
extended symmetric category if holds also 1 ,− • =τ τ ψ  for vertical composition of 
natural transformations : →st eF Tτ  and 1 : .− →e ndT Sτ  

Remark: it is easy to verify that in conceptually closed categories, any arrow f  is 
equivalent to an identity arrow, that is, .�ff id≈  
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It is easy to verify also that in extended symmetric categories the following is true: 
1 0 11 0 0( ( ; )) ( ) ( ( ; )),−• •e nd e ndstI IT F S T Sτ τ ψ ϕ ψ τ  where : C C→I I Iτ  is an identity natural 

transformation (for any object A  in ,C ( ) ).A=I A idτ  

Example 1: The set is an extended symmetric category: given any function : ,→f A B  
the conceptualised object of this function is the graph of this function (which is a set), 

( ) {( , ( )) | }.= =�
Tf B f x f x x A∈  

The equivalence ≈  on morphisms (arrows) is defined as follows: two arrows f  and g  
are equivalent, i.e., ,f g≈  iff they have the same graph. 

The composition * of objects is defined as an associative composition of  
binary relations (graphs), ( ) {( , ( )( )) | } {( , , ( )) | }= =D DTB g f x g f x x A y g y y B∈ ∈  
{( , ( )) | } ( ) ( ).= ∗D T Tx f x x A B g B f∈  

Set is also conceptually closed by the functor eT  such that for any object 
0( ) , , , ( ( )) ( ) {( , ( )) | }= = =e TJ f A B f T J f B f x f x x A< > ∈  and for any arrow 

1 2( ; ) : ( ) ( ),=k k J f J g  the component 1
eT  is defined as: for any 0( , ( )) ( ( )),ex f x T J f∈  

1
1 2 1 2( ; )( , ( )) ( ( ), ( ( ))).=eT k k x f x k x k f x  

It is easy to verify the compositional property for 1
eT  and that 

01
( ( ))( ; ) .= ee T J fA BT id id id  

For example, set is also an extended symmetric category, such that for any object 
( ) , ,=J f A B f< >  in  ,↓Set Set  we have that ( ( )) | ( )TJ f A B f\τ  is an epimorphism, 

such that for any  , ( ( ))( ) ( , ( )),=x A J f x x f x∈ τ  while 1( ( )) : ( )−
TJ f B f Bτ  is a 

monomorphism such that for any ( , ( )) ( ),Tx f x B f∈ 1( ( ))( , ( )) ( ).− =J f x f x f xτ  
Thus, each arrow in Set is a composition of an epimorphism and a monomorphism.� 
Now we are ready to present a formal definition for the DB  category: 

Theorem 3 (Majkić, 1998): The category DB  is an extended symmetric category, closed 
by the functor 0 1( , ) : ( ) ,= →↓e eeT T T C C C  where 0 =e TT B ψ  is the object component 
of this functor such that for any arrow f in ,DB  0 ( ( )) ,= �eT J f f  while its arrow 
component 1

eT  is defined as follows: for any arrow 1 2( ; ) : ( ) ( )→h h J f J g  in ,↓DB DB  
such that 1 2=D Dg h h f  in ,DB  holds: 

i{ }
i( ) i( ) k

0 1 2

1
1 2

{ } &

( ; )
= =

=
D

∪ i

f fi i

e f
q q v v h f

T h h q
∈∂ ∂  

 

The associative composition operator for objects *, defined for any fitted pair Dg f  of 
arrows, is the set intersection operator .∩  

Thus, k( ) ( ) ( ).∗ = = =�� ∩ D DT T TB g B f g f g f B g f  

Proof: Each object A  has its identity (point-to-point) morphism 
0 1( ) ( ) { }& { }= ==∩ iA Aii

Aq q  Av vA
qid ∂ ∂ ∈   and holds the associativity k k( ) ( )= �D D ∩ Dh h  g h g f  

k k( ) ( ) .= = =� � ��∩ ∩ D ∩ D Dh g f h g f h g  f  They have the same source and target object, thus 
( ) ( ) .=D D D Dh g f h g f  Thus, DB  is a category. It is easy to verify that also eT  is a well 

defined functor. In fact, for any identity arrow ( ; ) : ( ) ( )→A Bid id J f J f  it holds that 
i( ) i( ) k i �

0 1
1 { } & { }( ; ) = == =D∪ B if fi i

f fq q v v id fe A B
qT id id id∈∂ ∂   is the identity arrow of .�f  For any 

two arrows 1 2 1 2( ; ) : ( ) ( ), ( ; ) : ( ) ( ),→ →h h J f J g l l J g J k  it holds that 1 11 2 1 2( ; ) ( ; )De eT h h T l l  
k k k k i j � i i j �1 11 2 1 2 2 2 2 2 1 2 1 22 ( ) ( ) ( )( ; ) ( ; ) = = = = =� �∩ D ∩ D ∩ ∩ ∩ D D ∩ ∩ ∩ ∩e e g h g g h f by f g h g h h fT h h T l l T l T l l l  

i j � k 1
2 1 2 2 2 2 1 1 2 2( ) ( ; ),= = = =D D ∩ ∩ D D D Deby f g h h f h f T h hl l l l l  finally 1 1

1 2 1 2( ; ) ( ; )De eT h h T l l  
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1
1 1 2 2( ; ).= D DeT h hl l For any identity arrow, it holds that ,Aid  k0 ( ) = =e A AT J id id TA A  

as well, thus, an isomorphism : De DBT Iϕ ▲  is valid. � 

Remark: It is easy to verify (from 1 )− • =τ τ ψ  that for any given morphism : →f A B  
in ,DB  the arrow ( ( )) := �

epf J f A f\τ  is an epimorphism, and the arrow 
1( ( )) :−= �

inf J f f Bτ  is a monomorphism, so that any morphism f  in DB  is a 
composition of an epimorphism and monomorphism ,= D epinf f f  with the intermediate 
object equal to its ‘information flux’ ,�f  and with .epinf f f≈ ≈  

4 Database mappings and monadic coalgebras 

The notion of a monad is one of the most general mathematical notions. For instance, 
every algebraic theory, that is, every set of operations satisfying equational laws, can be 
seen as a monad (which is also a monoid in a category of endofunctors of a given 
category: the ‘operation’ μ  being the associative multiplication of this monoid and η  is 
its unit). Thus, monoid laws of the monad do subsume all possible algebraic laws. 

In order to explore universal algebra properties (Majkić, 2009a; 2009b) for the 
category ,DB  where, generally, morphisms are not functions (this fact complicates a 
definition of mappings from its morphisms into homomorphisms of the category of 

-algebras),ΣR  we will use an equivalent to DB  ‘functional’ category, denoted by 
,skDB  such that its arrows can be seen as total functions. 

Proposition 4: Let us denote by skDB  the full skeletal subcategory of ,DB  composed by 
closed objects only. Such a category is equivalent to the category ,DB  i.e., there exists 
an adjunction of a surjective functor : →sk skDB DBT  and an inclusion functor 

: ,→sk skDB DBIn  where 0
skIn  and 1

skIn  are two identity functions, such that 
= sksk sk DBT In Id  and .sk sk DBT In Id  

There exists the faithful forgetful functor : ,→sk skDBF Set  and 
: : ,→DDB sk sk DBF F T Set  thus skDB  and DB  are concrete categories. 

Proof: It can be found in Majkić (2009a). The skeletal category skDB  has closed objects 
only, so, for any mapping : ,→f A B  we obtain the arrow 0 ( )= = →skTf T A TA TB  can 

be expressed in a following ‘total’ form such that 0
0 ( ) ( ) := =skT T Tf A A∂  

0
0 1 0 1( ) ( ) { } & ( ) { } & & ( )

{ } { }
= = = =� �

� ∪ ∪i i

TA TA TA TAi i i i

TA TAT
q q q qv v f v v f

q qf
∂ ∂ ∈ ∂ ∉ ∂ ⊥

 

so that 1 ( ) := →TR skf F f TA TB  (the component for objects 1
skF  is an identity) is a 

function in Set, 1 ( ),= DBRf F f  such that for any ,v TA∈  ( )= =Rf v v  if ;⊥�v f∈  
otherwise. � 

In a given inductive definition, the value of a function (in our example the endofunctor 
)T  is defined on all (algebraic) constructors (relational operators). What follows is based 

on the fundamental results of the universal algebra (Cohn, 1965). 
Let ΣR  be a finitary signature (in the usual algebraic sense: a finite collection ΣF  of 

function symbols together with a function : Σ →ar F N  giving the finite arity of each 
function symbol) for a single-sorted (sort of relations) relational algebra. 



   

 

   

   
 

   

   

 

   

   520 Z. Majkić and B. Prasad    
 

    
 
 

   

   
 

   

   

 

   

       
 

We can speak of -equationsΣR  and their satisfaction in a -algebra,ΣR  obtaining the 
notion of a ( , )-algebraΣR E  theory. In a special case, when E  is empty, we obtain a 
purely syntax version of universal algebra, where K  is a category of all -algebras,ΣR  
and the quotient algebras are simply algebras of terms. 

An algebra for the algebraic theory (type) ( , )ΣR E  is given by a set ,X  called the 
carrier of the algebra, together with interpretations for each of the function symbols in 

.ΣR  A function symbol ΣRf ∈  of arity k  must be interpreted by a function 
m : .→k
Xf X X  Given this, a term containing n  distinct variables gives rise to a function 

→nX X  defined by induction on the structure of the term. An algebra must also satisfy 
the equations given in E  in the sense that equal terms give rise to identical functions 
(with obvious adjustments where the equated terms do not contain exactly the same 
variables). A homomorphism of algebras from an algebra X  to an algebra Y  is given by 
a function : →g X Y  which commutes with operations of the algebra 

1 1
ˆ ˆ( ( , , )) ( ( ), , ( )).=… …X k kYg f x x f g x g x  This generates a variety category K  of all 

relational algebras. Consequently, there is a bifunctor : × →OP
skE DB SetK  (where Set is 

the category of sets), such that for any database instance A  in skDB  there exists the 
functor ( , ) : →−E A SetK  with an universal element ( ( ), ),U A �  where 

( ( ), ), : ( )→E AU A A U A∈� �  is an inclusion function and ( )U A  is a free algebra over 
A  (quotient algebra generated by a carrier database instance ),A  such that for any 
function ( , )f E A X∈  there is a unique homomorphism h  from the free algebra ( )U A  
into an algebra ,X  with ( , ) .= Df E A h �� 

From the so called ‘parameter theorem’ (Theorem 3 for adjunctions with a parameter 
in Lane (1971) for a bifunctor : ),× →OP

skE DB SetK  we obtain that there exists: 

• A unique universal functor : →skU DB K  such that for any given database instance 
A  in skDB  it returns with the free -algebraΣR  ( )U A  (which is a quotient algebra), 
where a carrier is a set of equivalence classes of closed terms of a well-defined 
formulae of a relational algebra, ‘constructed’ by -constructorsΣR  (relational 
operators: select, project, join and union SPJRU) and symbols (attributes and 
relations) of a database instance ,A  and constants of attribute domains. An 
alternative for ( )U A  is given by considering A  as a set of variables rather than a set 
of constants then we can consider ( )U A  as being a set of derived operations of arity 
A  for this theory. In either case, the operations are interpreted syntactically as 

11
ˆ([ ], ,[ ]) [ ( , , )].=… …k kf t t f t t  In this, brackets denote equivalence classes, while,  

for any ‘functional’ morphism (correspondent to the total function 1 ( )sk TF f  in Set, 
: ) :→ →sk sk TDBF Set f A B  )skDB  we obtain the homomorphism 1( )=H Tf U f  

from the -algebraΣR  ( )U A  into the -algebraΣR  ( ),U B  such that for any term 
1( , , ) ( ), ,Σ… n Ra a U A∈ ∈ρ ρ  we obtain 1 1( ( , , )) ( ( ), , ( )).=… …H n H H nf a a f a f aρ ρ   

So, Hf  is an identity function for algebraic operators and it is equal to the function 
1 ( )sk TF f  for constants. 

• Its adjoint forgetful functor : ,→ skF DBK  such that for any free algebra ( )U A   
in K  the object ( )DF U A  in skDB  is equal to its carrier-set A  (each term 

1( , , ) ( )… na a U A∈ρ  is evaluated into a view of this closed object A  in )skDB  and 
for each arrow 1( )TU f  holds that 1 1 ( ) ,=T TF U f f  i.e., = skDBFU Id  and .=UF IdK  

Consequently, ( )U A  is a quotient algebra, where carrier is a set of equivalence classes of 
closed terms of a well-defined formulae of a relational algebra, ‘constructed’ by 

-constructorsΣR  (relational operators in SPJRU algebra: select, project, join and union) 
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and symbols (attributes of relations) of a database instance A  and constants of attribute 
domains. 

From the universal property, it immediately follows that the map ( )A U A  extends 
to the endofunctor : .→D sk skF U DB DB  This functor carries monad structure 
( , , )DF U η μ  with DF U  an equivalent version of T  but for this skeletal database 
category .skDB  The natural transformation η  is given by the obvious ‘inclusion’ of A  
into ( ) : [ ]→D A a aF U  (each view a in a closed object A  is an equivalence class  
of all algebra terms which produce this view). Note that the natural transformation η   
is the unit of this adjunction of U  and F  and that it corresponds to an inclusion function 
in the , : ( ),→Set A U A�  given above. The interpretation of μ  is almost equally  
simple. An element of 2( ) ( )D AF U  is an equivalence class of terms built up from 
elements of ( ),D AF U  so that instead of 1, ,… kx x  a typical element of 2( ) ( )D AF U  is 
given by the equivalence class of a term 1[ ( , , )].… kt t t  The transformation μ  is  
defined by the mapping 11[ ([ ], ,[ ])] [ ( , , )].… …k kt t t t t t  This makes sense because a 
substitution of provably equal expressions into the same term results in provably equal 
terms. 

We use monads (Lane, 1971; Lambek and Scott, 1986; Kelly and Power, 1993) for 
giving denotational semantics to database mappings. More specifically, we use monads 
as a way of modelling computational/collection types (Moggi, 1989, 1991; Buneman et 
al., 1995; Plotkin and Power, 2001): to interpret database mappings (morphisms) in the 
category ,DB  we distinguish the object A  (database instance of type )A  from the object 
TA  of observations (computations of type A  without side-effects) and take as a 
denotation of (view) mappings the elements of TA  (which are view of (type) ).A  In 
particular, we identify the type A  with the object of values (of type )A  and obtain the 
object of observations by applying the unary type-constructor T  (power-view operator) 
to .A  It is well-known that each endofunctor defines algebras and coalgebras (the left and 
right commutative diagrams): 

Figure 1 Algebras and coagebras 

 

We use the following well-known definitions in the category theory (the set of all arrows 
in a category M  from A  to B  is denoted by ( , )) :A BM  

Definition 6: The categories algCT  of -algebras,T  coalgCT  of -coalgebras,T  derived 
from an endofunctor ,T  are defined (Asperti and Longo, 1991) as follows: 

1 the objects of algCT  are pairs ( , )A h  with DBObA ∈  and ( , ),h DB TA A∈  the 
arrows between objects ( , )A h  and ( , )B k  are all arrows ( , )f DB A B∈  such that 

:= →D Dk Tf f h TA B  
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2 the objects of coalgCT  are pairs ( , )A h  with DBObA ∈  and ( , ),h DB A TA∈  the 
arrows between objects ( , )A h  and ( , )B k  are all arrows ( , )f DB A B∈  such that 

: .= →D DTf h k f A TB  

Definition 7: The monadic algebras/coalgebras, derived from a monad ( , , ),T η μ  are 
defined (Asperti and Longo, 1991; Lane, 1971) as follows: 

• Each -algebraT ( , : ),→A h TA A  where h is a ‘structure map’, such that 
=D DAh h Thμ  and =D AAh idη  holds is a monadic -algebra.T  The category of  

all monadic algebras algT  is a full subcategory of .algCT  

• Each -coalgebraT  ( , : ),→A k A TA  such that =D DC
ATk k kμ  and =DC

A Ak idη  
holds is a monadic -coalgebra.T  The category of all monadic coalgebras coalgT  is a 
full subcategory of .coalgCT  

Note: The monad ( , , )T η μ  given by commutative diagrams 

Figure 2 Monads 

 

defines the adjunction , , , : →T T T T algTF G DB< >η μ  such that 
: ,= →DT T TG F DB DB  ,=Tη η  =T invηε  and .= T T TG Fμ ε  The functors 

: →T algTF DB  and : →T algTG DB  are defined as follows: for any object (database) 
,A  ( ) ( , : ),= invT

AF A A TA Aη  while ( , : ) ,=invT
AG A TA A TAη  for arrows TF  and 

TG  are identity functions. 

Definition 8: Given a monad ( , , )T η μ  over a category ,M  we have (Lane, 1971): 

• Kleisli triple is a triple ( , , ),∗−T η  where for : →f A TB  we have : ,∗ →f TA TB  
such that the following equations hold: ,TA

∗ =A idη  ,∗ =D Af fη  ( ),∗ ∗ ∗=D Dg f g f  for 
: →f A TB  and : .→g B TC  

A Kleisli triple satisfies the mono requirement provided Aη  is monic for each object 
.A  

• Kleisli category TM  has the same objects as M  category. For any two objects 
,A B  there is the bijection between arrows : ( , ) ( , ).→A TB A Bθ M M  For any two 

arrows : ,→f A B  : →g B C  in ,TM  their composition is defined by 
1 1( ( ) ( )).− −D � D DCg f T g fθ μ θ θ  

The mono requirement for monad ( , , )T η μ  (Moggi, 1991) is satisfied because 
: →A TAAη  is a isomorphism =A Aisη  (we denote its inverse by 1),−

Aη  thus it is also 
monic. Consequently, the category DB  is a computational model for view-mappings 
(which are programs) based on observations (i.e., views) with the typed operator ,T  so 
that: 
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• TA  is a type of computations (i.e., observations of the object of values A  (of type 
),A  which are the views of the database ).A  

• Aη  is the inclusion of values into computations (i.e., inclusion of elements of the 
database A  into the set of views of the database ).A  It is the isomorphism 

: .= →A A Ais TAη  

• ∗f  is the ‘equivalent’ extension of a database mapping : ,→f A TB  ‘from values  
to computations’ (programs correspond to call-by-value parameter passing) to a 
mapping ‘from computations to computations’ (programs correspond to call-
byname), such that holds 1: ,∗ −→ D DB Af Tf fμ η  so .∗f f≈  

Thus, in DB  category, call-by-value ( : )→f A TB   and call-by-name 
( : )∗ →f TA TB  paradigms of programs are represented by equivalent morphisms 

.∗f f≈  Notice that in skeletal category skDB  (which is equivalent to ),DB  all 
morphisms correspond to the call-by-name paradigm. This is because each arrow is a 
mapping from computations into computations (which are closed objects). 

The basic idea behind the semantic of programs (Moggi, 1989) is that a program denotes 
a morphism from A  (the object of values of type )A  to TB  (the object of computations 
of type ),B  according to the view of ‘programs as functions from values to 
computations’, so that the natural category for interpreting programs (in our case, a 
particular equivalent ‘computation’ database mappings of the form 1 : ,→D� Bf f A TBη  
derived from a database mapping : ,→f A B  such that 1 )f f≈  is not a DB  category but 
it is a Kleisli category .TDB  

In our case, the Kleisli category is a perfect model only for a subset of database 
mappings in :DB  exactly for every view-mapping (i.e., query) : →Aq A TA  which is 
just an arrow in Kleisli category ( ) : .→Aq A Aθ  For a general database mapping 

: →f A B  in ,DB  only its (equivalent to )f  ‘computation extension’ : →DB f A TBη  
is an arrow ( ) : →DB f A Bθ η  in the Kleisli category. Consequently, the Kleisli category 
is a model for database mappings up to the equivalence ‘ ’.≈  

It means that, generally, database mappings are not simply programs from values into 
computations. In fact, the semantics of a database mapping between any two objects A  
and B  can be specified as follows: for some set of computations (i.e., query-mappings) 
over ,A  we have the same equivalent (in the sense that these programs produce the same 
computed value (view)) set of computations (query-mappings) over :B  it is 
fundamentally an equivalence of computations. This is a consequence of the fact that 
each database mapping (which is not a function) from A  into B  is naturally 
bidirectional, i.e., it is a morphism : →f A B  and its equivalent reversed morphism 

: →invf B A  together [explained by the duality property OP=DB DB  (Majkić, 2008)]. 
Let us define this equivalence formally: 

Definition 9: Each database mapping : →h A B  is an equivalence of programs 
(epimorphisms), ( ( )) :�Ah J h A THτ \  and 1( ( )) :−� inv

Bh J h B THτ \  (τ  and 1−τ  
are natural transformations of a categorial symmetry), where H  generates a closed object 
�h  (i.e., )= �TH h  and ,A Bh h h≈ ≈  such that computations of these two programs 

(arrows of Kleisli category )TDB  are equal, i.e., 1 1( (=A Bh h∂ ) ∂ ).  

We can also provide an alternative model for equivalent computational extensions of 
database mappings in DB  category: 
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Proposition 5: Denotational semantics of each mapping ,f  between any two database 
instances A  and ,B  is given by the unique equivalent ‘computation’ arrow 1 D� Bf fη  
in coalgT  from the monadic -coalgebraT  ( , )AA η  into a cofree monadic -coalgebraT  
( , ),B

CTB μ  1 : ( , ) ( , ),B→ C
Af A TBη μ  or , dually, by the unique equivalent arrow 

1 ( ) B=� D Dinv inv inv
inv Bf f fη η  from the free monadic -algebraT  ( , )BTB μ  into the 

monadic -algebraT  ( , ).A
invA η  

Proof: In fact, =D DC
B Af Tfμ η  holds. It is because j,= = =� � �∩ ∩C C

TBB B TBid f f fμ μ  and 
j j j j j �= = =∩ ∩ ∩ ∩ATf Tf TA Tf TTA Tf fη  (because �f  is a closed object). � 

Note that each view-map (query) : →Aq A TA  is just equal to its denotational semantics 
arrow in ,coalgT  : ( , ) ( , ).B→ C

AAq A TAη μ  
It is well-known that for a Kleisli category there exists an adjunction 

, , ,T T T TF G< >η μ  such that we obtain the same monad ( , , ),T η μ  such that 
, , .= = =T T T T T TT G F G Fμ ε η η  Let us see now how the Kleisli category TDB  is 

‘internalised’ into the DB  category. 
Proposition 6: The Kleisli category TDB  of the monad ( , , )T η μ  is isomorphic to DB  
category, i.e., it may be ‘internalised’ in DB  by the faithful forgetful functor 

0 1( , ) : ,= →TK K K DB DB  such that 0K  is an identity function and 1 1,−�K φθ  
where, for any two objects A  and :B  
• : ( , ) ( , )TDB A TB DB A Bθ  is Kleisli 
• : ( , ) ( , ),DB A TB DB A Bφ  such that ( )( ) _−=− Dinv

codφ η  is DB  category bijection 
respectively. 

We can generalise a ‘representation’ for the base DB  category (instead of usual Set 
category): a ‘representation’ of functor K  is a pair , ,ϒ ϒ< >ϕ  is the total object and 

_: ( , )ϒTDB Kϕ  is a natural isomorphism, where the functor 
_: ( , ) :ϒ →T TDB DB DBϕ  defines ‘internalised’ hom-sets in ,TDB  i.e., 

0 ( , ) ,ϒϒ �TDB B TB  1 ( , ) .ϒϒ �TDB f id Tf⊗  
Proof: Let us prove that φ  is really a bijection in .DB  For any program morphism 

: →f A TB  we obtain ( ) := →Dinv
Bf f A Bφ η  and, vice versa, for any : →g A B  its 

inverse 1( ) ,− � DBg gφ η  thus , 1( ) ( ) ( ) ( )− = = =D D D D Dinv inv
B B B B Bg g g gφφ η η η η η  

= =DBid g g  (because Bη  is an isomorphism), i.e., 1−φφ  is an identity function. Also 
1 1( ) ( ) ( ) ( ) ,− −= = = = =D D D D D Dinv inv inv

TBB B B B Bf f f f id f fφ φ φ η η η η η  i.e., 1−φ φ  is an 
identity function, thus φ  is a bijection. 
Let us demonstrate that K  is a functor: For any identity arrow ( ) := →T Aid A Aθ η  in 

TDB  we obtain 1 1( ) ( ( )) ( )−= = = =Dinv
AA A A ATK id idφθ θ η φ η η η  (because Aη  is an 

isomorphism). For any two arrows : →Tg B C  and : →Tf A B  in Kleisli category, we 

obtain, 1 1 1 1( ) ( ( ( ) ( ))− −=D D DT T C T TK g f K T g fθ μ θ θ  (from def. Kleisli category) 
1( ( ))−= D DC Tg fφθ θ μ  (where 1( ) : ,T

− →�g g B TCθ  1( ) : )T
− → =�f f A TBθ φ  

( )D Dinv
Bg fη  (it is easy to verify in DB  that )= =D D D D D D Dinv inv inv

C B BCTg f g f g fμ η η η  
1 1 1 1 1 1( ( )) ( ( )) ( ( )) ( ) ( ).T T T
− − −= =D Dg f K f K g K fφθ θ φθ θ θθ  

Thus, each arrow : →Tf A B  in TDB  is ‘internalised’ in DB  by its representation 
1 1 1( ) ( ) ( ) : ,T T T

− −= = →� Dinv
Bf K f f f A Bφθ η θ  where 1( ) :− →Tf A TBθ  is a program 

equivalent to the database mapping : ,→f A B  i.e., 1( ) .−
Tf f≈θ  
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K  is a faithful functor, in fact, for any two arrows , : →T Tf h A B  in ,TDB  
1 1( ) ( )T T=K f K h  implies :=T Tf h  from 1 1( ) ( )T T=K f K h  we obtain 

1 1( ) ( ),T T
− −=f hφθ φθ  if we apply a bijection 1−θφ  we obtain 1 1 1( ) ( ),− − −=T Tf hθφ θφ φθ  

i.e., 1 1( ) ( ),− −=T Tf hθθ θθ  i.e., =T Tf h  1( −θθ  and 1−φ φ  are identity functions). Let us 
prove that K  is an isomorphism: from the adjunction , , , : ,→T T T T

TF G DB DB< >η μ   
where 0

TF  is identity, 1 1,− −�TF θφ  we obtain that =D TDBTF K I  and ,=D DBTK F I  
thus, the functor K  is an isomorphism of DB  and Kleisli category .TDB  � 

Remark: It is easy to verify that a natural isomorphism : →DBI Tη  of the monad 
( , , )T η μ  is equal to the natural transformation : .→ TK Gη  (consider that 

: →T TG DB DB  is defined by, 0 0=TG T  and for any : →Tf A B  in ,TDB  
1 1( ) ( ) : ).− →� DT BT TTG f f TA TBμ θ  

Thus, the functor TF  has two different adjunctions: the universal adjunction 
, , ,T T T TF G< >η μ  which gives the same monad ( , , )T η μ  and this particular (for DB  

category only) isomorphism’s adjunction , , ,T
I IF K< >η μ  which gives banal identity 

monad. We are now ready to define the semantics of queries in DB  category and the 
categorical definition of query equivalence. This is important in the context of the 
Database integration/exchange and for the theory of query-rewriting (Halevy, 2000). 

When we define a mapping (arrow, morphism) : →f A B  between two databases A  
and ,B  implicitly we are defining the ‘information flux’ ,�f  i.e., the set of views of A  
‘transmitted’ by this mapping into .B  Thus, in the context of query-rewriting, we 
consider only queries (i.e., view-maps) whose resulting view (observation) belongs to the 
‘information flux’ of this mapping. Consequently, given any two queries, : →iAq TAA  
and : ,→jBq B TB  they have to satisfy (w.r.t. query rewriting constraints) the condition 

1( ) �
iAq f∂ ∈  (the 1( )iAq∂  is just a resulting view of this query) and 1( ) .�jBq f∂ ∈  So, the 

well-rewritten query over ,B  : ,→jBq B TB  such that it is equivalent to the original 
query, i.e., ,j iB Aq q≈  must satisfy the condition 1 1( ) ( ) .= �∂ ∂ ∈j iB Aq q f  

Now we can give the denotational semantics for a query-rewriting in a data 
integration/exchange environment: 

Proposition 7: Each database query is a (non-monadic) -coalgebra.T  Any morphism 
between two -coalgebrasT  : ( , ) ( , )→ jiA Bq qf A B  defines the semantics for relevant 
query-rewriting, when 1( ) .�iAq f∂ ∈  

Proof: Consider the following commutative diagram, where vertical arrows are 
-coalgebras :T  

Figure 3 Queries 
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The morphism between two -coalgebrasT  : ( , ) ( , )→ jiA Bq qf A B  means that the 
commutativity := →D Dj iB Aq qf Tf TBA  is valid and from duality property we obtain 

.= D Di i
inv

B Aq qTf f  Consequently, for a given mapping : →f A B  between databases 
A  and B  and for every query iAq  such that 1( ) �

iAq f∂ ∈  (i.e., j ),�iAq f⊆  we can have an 
equivalent rewritten query jBq  over a data base .B  In fact j j j k j= =∩ ∩j i i

inv
B A Aq q qfTf  

because of the fact j �
iAq f⊆  and k j .= = �invf Tf f  Thus .j iB Aq q≈  � 

5 Conclusions 

In this paper, we presented some fundamental properties and semantics for database 
mappings in the DB  category. Majkic (2009) introduced the categorial (functors) 
semantics for two basic database operations: matching and merging (and data federation) 
and defined the algebraic database lattice. He has also shown that DB  is concrete, small 
and locally finitely presentable (lfp) category and DB  is also monoidal symmetric  
V-category enriched over itself. Based on these results, he developed a metric space and a 
subobject classifier for DB  category and shown that it is a weak monoidal topos. In this 
paper, we considered some Universal algebra considerations and defined a categorical 
coalgebraic semantics for GLAV database mappings based on monads. 

It was shown that a categorial semantics of database mappings can be given by the 
Kleisli category of the power-view monad ,T  that is, it was shown that Kleisli category 
is a model for database mappings up to the equivalence ≈  of morphisms in DB  
category. It was demonstrated that Kleisli category is isomorphic to theDB  category and 
that call-by-values and call-by-name paradigms of programs (database mappings) are 
represented by equivalent morphisms. Moreover, it was shown that each database query 
(which is a program) is a monadic -coalgebraT  and that any morphism between two 

-coalgebrasT  defines the semantics for the relevant query-rewriting. 
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