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Abstract. This paper presents a new binary sequent calculi for many valued
logic with a finite set of truth values, in which these calculi are both sound
and complete, and Kripke-like semantics for these calculi. In order to define a
non-matrix based sequent calculus, based on the generalization of the classic 2-
valued truth-invariance entailment, we transform many-valued logic into positive
2-valued multi-modal logic with classic conjunction, disjunction and a finite set
of modal connectives. In this algebraic framework, we define a uniquely deter-
mined axiom system by extending the classic 2-valued distributive lattice logic
by a new set of sequent axioms for many-valued logic connectives. Dually, in an
autoreferential Kripke-style framework, we obtain a uniquely determined frame,
where each possible world is an equivalence class of Lindenbaum algebra for a
many-valued logic as well, represented by a truth value.

1 Introduction

A large number of real-world applications in Artificial Intelligence deal with partial,
imprecise and uncertain information. In order to handle this kind of information, non-
classic truth-functional many-valued logics such as fuzzy logic, bilattice-based logic,
paraconsistent logic, etc. were introduced. The first formal semantics for modal logic
was based on many-valuedness, proposed by Lukasiewicz in 1918-1920, and it was
consolidated in 1953 in a 4-valued system of modal logic [1]. All cases of many-valued
logics mentioned above are based on a lattice (X,≤) of truth values.
Sequent calculus, introduced by Gentzen [2] and Hertz [3] for classical logic, was gen-
eralized to the many-valued case by Rouseau [4] and others. The tableaux calculi were
presented in [5,6]. The standard two-sides sequent calculus for lattice-based many-
valued logics have been elaborated recently (with an autoreferential Kripke-style se-
mantics for such logics) in two complementary ways [7,8,9,10].
In this research, we consider the truth-functional algebraic semantics for a given logic
language, with a set of ground formulae (without variables) L, with a set of many-
valued logic connectives in Σ and predicate (or propositional) letters p, q, r, .. A many-
valued valuation v : L → X in this research is a homomorphism between the free
syntax-algebra of this logic language and the algebra (X, Σ) of truth-values. That is,
for any n-ary logic connective ¯ in Σ, ¯ : Xn → X , we have v(¯(φ1, ..., φn) =
¯(v(φ1), ..., v(φn)), where φi ∈ L, 1 ≤ i ≤ n are logic formulae in L. Notice that a
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non truth-functional many-valued semantics is also available [11]. It is based on ”non-
deterministic” connectives ˜̄ : Xn → 2X (where AB denotes the set of all functions
from the set B to A and 2 = {0, 1} is a complete lattice of classical 2-valued logic) for
each ordinary connective¯ ∈ Σ, such that v(¯(φ1, ..., φn) ∈ ˜̄(v(φ1), ..., v(φn)), and
so called Nmatrices (non-deterministic matrices). However, in this ”nondeterministic”
case, the compositional property (the homomorphic property above) of a many-valued
non-deterministic valuation v is not valid. Thus, in this research, we consider only the
truth-functional many-valued logics where the valuations are homomorphic.
The well-known semantics of the many-valued logics is based on algebraic matrices
(X, D) where D ⊂ X = {x1, ..., xm} is a strict subset of designated truth values,
so that a valuation v is a model for a formula φ ∈ L iff v(φ) ∈ D. This semantics
is commonly used in practice, particularly when the number of truth-values is limited.
As in the case of three-valued propositional logic, two different choices of the set of
designated values for the same semantics respectively give Kleene logic and a basic
paraconsistent logic J3, both are very important for mathematical logic and its applica-
tions.
The well known sequent system developed for such a many-valued logic with matrix-
based semantics is an ad hoc system based on m-sequents. More detailed information
can be found in [12,13]. Although the approach to this well known m-sequent system
is absolutely correct and useful, it has some minor drawbacks:

– It is not well-known when compared to those that are based on ordinary two-sided
sequents. The framework for two-sided sequent calculi are well-understood and a
lot of programs have been made in developing their efficient implementations.

– The use of two-sided sequents reflects the basic fact that logic is all about con-
sequence relations. In the m-sequent calculus, only some characterization of the
consequence relation can be done in a roundabout way.

– The use of two-sided sequents is universal and independent of any particular se-
mantics, while the use of m-sequents relies on specific semantics for a given logic.

Consequently, it is interesting to consider a calculus for many-valued logics based on
standard binary sequents. The previous work in this direction is recently proposed in
[14] ant it is based on m-valued Nmatrices, signed formulae and a Rasiowa-Sikorski
deduction system [15,16]. In the approach used in [14], an m-sequent calculus is trans-
formed into the ordinary two-sided sequent system (where each sequent is of the form
Γ ` 4, where Γ,4 ⊂ L are the finite subsets of logic formulae).
Notice that both sequent systems above are based on matrix semantics for logic entail-
ment. This is not the case in our research: we use the truth-invariance semantics for
many-valued logic [17] that is different from matrix-based semantics.
In this paper, we propose this new approach to the semantics of many-valued logics by
transforming the original many-valued logic into the 2-valued multi-modal logic [18].
Then, based on the classical 2-valued distributive lattice logic (DLL) [19] extended by a
set of new axioms for this 2-valued transformation of many-valued logic, we apply the
Dunn’s binary-sequent approach. In the original Dunn’s approach, each sequent is of
the simple form Φ ` Ψ (here Φ and Ψ are the 2-valued multi-modal formulae) and, con-
sequently, his system is a particular sequent calculus where the left side of a sequent is
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not generally a set of 2-valued formulae but a single formula. Other differences between
the previous approaches and the approach used in this research are as follows:

– We will not use the many-valued Rosser-Turquette operators Jk [20] that have been
introduced long before the appearance of the Kripke semantics for algebraic modal
operators. We will replace them by modal operators as follows: adopt the ontolog-
ical encapsulation of many-valued logic into 2-valued multi-modal logic [18] with
algebraic modal operators [x] : X → 2 for any x ∈ X . We use [x] both as a modal
operator, i.e., as a syntactic language entity for modality ”heaving a truth-value x”
(it express exactly the modality of truth of the formula φ) and as a function on truth
values, i.e., a semantic entity, which will be clear from the particular context where
[x] is used.

– We avoided using the signed formulae used in [14]. In this way, by using modal
approach and its standard Kripke semantics, we are not obligated to develop an
unnecessary ad-hoc semantics for such a calculus as shown in Section 4.

Notice that the main result of this work is that we obtained a standard binary sequent
calculi for finite many-valued logic with the truth-invariance semantics of logic en-
tailment. Consequently, this work is not only another new reformulation of the same
many-valued inference system based on matrices but it is a substantially new inference
system that is different from the m-sequents and from the sequent calculi in [14] (that
are mutually equivalent). We apply this new approach to many-valued predicate logic
(without quantifiers), with the set of k-ary predicate letters in P , and to its particular
propositional case (where all predicate letters have 0-arity).
The rest of the paper is organized as follows: After a brief introduction to the truth-
invariance inference semantics, multi-modal predicate logics (without quantifiers), and
a short introduction to binary sequents and bivaluations, Section 2 presents the reduction
of finite many-valued propositional (and predicate) logic language L into the 2-valued
multi-modal algebraic logic language LM . After that, we show the main properties of
this positive logic (with standard 2-valued conjunction and disjunction and a modal op-
erator [x] for each truth value x in a finite set X). We present normal-forms reduction
as well, where each obtained formula has the modal operators applied only to proposi-
tional letters in L (atoms in predicate logic with Herbrand base H). Section 3 presents
the binary sequent system G that we developed by extending the classic 2-valued DLL
with the set of sequent axioms for each logic connective of a many-valued logic lan-
guage L. We show that this proof-theoretic sequent logic is sound and complete w.r.t.
the model-theoretic semantics, based on many-valued valuations: each deduced sequent
from G and a given set of sequent assumptions Γ is also a valid sequent (satisfied for
every many-valued valuation) and vice versa. Finally, in Section 4, we present the de-
velopment of an autoreferential Kripke-style semantics, based on Lindenbaum algebra
of a many-valued logic language L. We also define the Kripke frame for it with the
set of possible worlds equal to the set of truth values X . After that, we show that the
semantics is correct (sound and complete) for the multi-modal logic language LM , i.e.,
we demonstrate that for each many-valued algebraic model, we obtain a correspondent
Kripke model, so that a formula that is true in LM is true in this Kripke model as well
and vice versa.
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1.1 Truth-invariance model-theoretic entailment

In this paper, we denote the set of all functions from A to B by BA, and a n-fold Carte-
sian product A× ...×A for n ≥ 1 by An, and the set of all subsets of A by P(A).
In the standard 2-valued model-theoretic semantics, we say that a valuation v : L → 2
is a model of a sentence ψ ∈ L iff v(ψ) = 1 (here L denotes the set of all ground for-
mulae of a given logic language). Consequently, a formula φ is deduced from the set of
formulae Γ ⊆ L, denoted by Γ |=1 φ, iff ∀v ∈ ModΓ .(v(φ) = 1), where ModΓ is the
set of all models of the formulae in Γ (here we use the index 1 ∈ 2 in the consequence
relation |=1 to indicate the deduction of the true formulae).
The set Γ can be formally constructed by a subset of formulae Γ1 that we want to be
(always) true, and by a subset of formulae Γ0 that we want to be (always) false so that
Γ = Γ1

⋃{¬φ |φ ∈ Γ0 }, where ¬ is the 2-valued negation operator (¬1 = 0,¬0 = 1).
What is not often highlighted is that this standard 2-valued model-theoretic semantics
implicitly defines the set of false sentences deduced from Γ as well, denoted here ex-
plicitly by the new derived symbol |=0 for the deduction of false sentences (with the
index 0 ∈ 2) by: Γ |=0 φ iff Γ |=1 ¬φ, that is, iff ∀v ∈ ModΓ .(v(φ) = 0).
Consequently, the classic 2-valued truth-invariance semantics of logic entailment can
be paraphrased by the following generalized entailment, denoted by Γ |= φ:
(CL) ”a formula φ is a logic consequence of the set Γ ” iff (∃x ∈ 2)(∀v ∈
ModΓ ).(v(φ) = x).
Thus, classic 2-valued entailment deduces both true and false sentences if they have
the same (i.e., invariant) truth-value in all models of Γ . The consequence relation |=1

defines Tarskian closure operator C : P(L) → P(L) such that C(Γ ) = {φ | φ ∈ L and
Γ |=1 φ}. In the 2-valued logics we do not need to use the consequence relation |=0

because the set of false sentences deduced from Γ is equal to the set {¬φ | φ ∈ L and
Γ |=1 φ} = {¬φ | φ ∈ C(Γ )}. This particular property explains why, in the classic
2-valued logic, it is enough to consider only the consequence relation for deduction of
true sentences, or alternatively the Tarskian closure operator C.
In the case of many-valued logics, it is not generally the case and we need the conse-
quence relations for the derivation of sentences that are not true as well. Consequently,
we will extend this classic 2-valued model-theoretic truth-invariance semantics of logic
entailment to many-valued logics as well by:
(MV) Γ |= φ iff (∃x ∈ X)(∀v ∈ ModΓ ).(v(φ) = x),
where ModΓ is specified by prefixing a particular truth-value y ∈ X to each formula
ψ ∈ Γ , as we explained previously in the case of the 2-valued logic with two subsets
Γ1 and Γ0 for prefixed true and false sentences.
The matrix-based inference is different and specified by:
(MX) Γ |= φ iff (∀v ∈ ModΓ,D).(v(φ) ∈ D),
with the set of models ModΓ,D of Γ defined as the set of valuations v such that
(∀ψ ∈ Γ ).(v(ψ) ∈ D).
It is easy to verify that both semantics, the truth-invariance (MV) and the matrix-based
(MX), in the case of classic 2-valued logics, where D = {1}, coincide.
This new truth-invariance semantics of logic entailment for many-valued logics has
been presented for the first time in [17] and successively used for a new representation
theorem for many-valued modal logics [10].
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1.2 Introduction to multi-modal predicate logic

More exhaustive and formal introduction to modal logics and their Kripke models can
be found in the literature [21]. Here, we provide only a short informal version, in order
to make more clear definitions that are used in the next few paragraphs.
A predicate multi-modal logic, for a language with a set of predicate symbols r ∈ P
with arity ar(r) ≥ 0 and a set of functional symbols f ∈ F with arity ar(f) ≥ 0,
is a standard predicate logic extended by a finite number of universal modal operators
2i, i ≥ 1. In this case we do not require that these universal modal operators are normal
(that is, monotonic and multiplicative) modal operators as in the standard setting for
modal logics but we require that they have the same standard Kripke semantics. In the
standard Kripke semantics, each modal operator 2i is defined by an accessibility binary
relation Ri ⊆ W ×W for a given set of possible worlds W .
We define the set of terms of this predicate modal logic as follows (V ar denotes the set
of variables and S the set of constants): all variables x ∈ V ar and constants d ∈ S are
terms; if f ∈ F is a functional symbol of arity k = ar(f) and t1, .., tk are terms then
f(t1, .., tk) is a term. We denote the set of all ground (without variables) terms by T0.
An atomic formula (atom) for a predicate symbol r ∈ P with arity k = ar(r) is an
expression r(t1, ..., tk), where ti, i = 1, ..., k are terms. Herbrand base H is a set of
all ground atoms (atoms without variables). More complex formulae, for a predicate
multi-modal logic, are obtained as a free algebra obtained from the set of all atoms
and usual set of classic 2-valued binary logic connectives in {∧,∨,⇒} for conjunction,
disjunction and implication respectively (negation of a formula φ, denoted by ¬φ is
expressed by φ ⇒ 0, where 0 is used for an inconsistent formula (has value 0 constantly
for every valuation), and a number of unary universal modal operators 2i. We define
N = {1, ..., n}, where n is the maximal arity of symbols in the finite set P

⋃
F .

Definition 1. We denote a multi-modal Kripke model by M = (W, {Ri | 1 ≤ i ≤
k}, S, V ), with finite k ≥ 1 modal operators with a set of possible worlds W , the ac-
cessibility relations Ri ⊆ W × W , non empty set of individuals S, and a function
V : W × (P

⋃
F ) → ⋃

n∈N (2
⋃

S)Sn

, such that for any world w ∈ W ,
1. For any functional letter f ∈ F , V (w, f) : Sar(f) → S is a function (interpretation
of f in w).
2. For any predicate letter r ∈ P , the function V (w, r) : Sar(r) → 2 defines the exten-
sion of r in a world w, ‖r‖ = {d =< d1, ..., dk >∈ Sk | k = ar(r), V (w, r)(d) = 1}.

We denote the fact that a formula ϕ is satisfied in a world w ∈ W for a given assignment
g : V ar → S by M |=w,g ϕ. For example, a given atom r(x1, ..., xk) is satisfied in
w by assignment g, i.e., M |=w,g r(x1, ..., xk) iff V (w, r)(g(x1), ..., g(xk)) = 1.
The Kripke semantics is extended to all formuale as follows:
M |=w,g ϕ ∧ φ iff M |=w,g ϕ and M |=w,g φ ,
M |=w,g ϕ ∨ φ iff M |=w,g ϕ or M |=w,g φ ,
M |=w,g ϕ ⇒ φ iff M |=w,g ϕ implies M |=w,g φ ,
M |=w,g 2iϕ iff ∀w′((w,w′) ∈ Ri implies M |=w′,g ϕ ) .
The existential modal operator♦i can be defined as a derived operator by taking ¬2i¬.
A formula ϕ is said to be true in a model M if for each assignment function g and
possible world w, M |=w,g ϕ. A formula is said to be valid if it is true in each model.
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We denote the set of all worlds where the ground formula φ/g (obtained from φ and an
assignment g) is satisfied by ‖φ/g‖ = {w | M} |=w,g φ}.
Remark: in this paper we use the notation [x] (for any truth value x ∈ X) for universal
modal operators, instead of standard notation 2i.

1.3 Introduction to binary sequents and bivaluations

Sequent calculus has been developed by Gentzen [2], inspired on ideas of Paul Hertz
[3]. Given a propositional logic language LA (a set of logic formulae), a sequent is a
consequence pair of formulae, s = (φ; ψ) ∈ LA × LA, denoted also by φ ` ψ.
A Gentzen system, denoted by a pair G = 〈L, °〉, where ° is a consequence relation
on a set of sequents in L ⊆ LA × LA, is said to be normal if it satisfies the following
conditions: for any sequent s = φ ` ψ ∈ L and a set of sequents Γ = {si = φi ` ψi ∈
L | i ∈ I},
1. reflexivity: if s ∈ Γ then Γ ° s
2. transitivity: if Γ ° s and for every s′ ∈ Γ , Θ ° s′, then Θ ° s
3. finiteness: if Γ ° s then there is finite Θ ⊆ Γ such that Θ ° s.
4. for any homomorphism σ from L into itself (i.e., a substitution), if Γ ° s then
σ[Γ ] ° σ(s), i.e., {σ(φi) ` σ(ψi) | i ∈ I} ° (σ(φ) ` σ(ψ)).
Notice that from (1) and (2) we obtain this monotonic property:
5. if Γ ° s and Γ ⊆ Θ, then Θ ° s.
We denote the Tarskian closure operator by C : P(L) → P(L), such that C(Γ ) =def

{s ∈ L | Γ ° s}, with the properties: Γ ⊆ C(Γ ) (from reflexivity (1)); it is monotonic,
i.e., Γ ⊆ Γ1 implies C(Γ ) ⊆ C(Γ1) (from (5)), and an involution C(C(Γ )) = C(Γ )
as well. Thus, we obtain
6. Γ ° s iff s ∈ C(Γ ).
Any sequent theory Γ ⊆ L is said to be a closed theory iff Γ = C(Γ ). This closure
property corresponds to the fact that Γ ° s iff s ∈ Γ .
Each sequent theory Γ can be considered as a bivaluation (a characteristic function)
β : L→ 2 such that for any sequent s ∈ L, β(s) = 1 iff s ∈ Γ .

2 Reduction of finite many-valued logic into 2-valued multi-modal
logic

Let LP be a predicate logic language obtained as a free algebra from connectives in Σ
of an algebra with a set X of truth values (for example the many-valued conjunction,
disjunction and implication {∧m,∨m,⇒m} ⊆ Σ are binary operators, negation ¬m ∈
Σ and other modal operators are unary operators, while each x ∈ X ⊆ Σ is a constant
(nullary operator)), a set P of predicate symbols denoted by p, r, q, .. with a given arity
(in case when the arity of all symbols in P is a zero we obtain that P is the set of
propositional variables (letters), so that LP is a propositional logic), and a set F of
functional symbols (with a given arity) denoted by f, g, h.
We define the set of terms of this logic as follows: all variables νi ∈ V ar, i = 1, 2, ...
and constants d ∈ S are terms; if f ∈ F is a functional symbol of arity n and t1, .., tn
are terms, then f(t1, .., tn) is a term. The ground term is a term without variables. We
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denote the set of all terms by TS .
The set of atoms is defined as AS = {p(c1, .., cn) | p ∈ P, n = arity(p) and
ci ∈ TS}. The set of all ground atoms (without variables), H = {p(c1/g, .., cn/g) | p ∈
P, n = arity(p) , ci ∈ TS and g : V ar → S}, is a Herbrand base (here ci/g denotes
a ground atom obtained from a term ci by an assignment g).
Any atom is a logic formulae. The combination of logic formulae by logical connectives
in Σ is another logic formula.
We denote the subset of the logic language LP composed of only ground formulae by
L. In this case we can represent each ground atom by a particular propositional letter,
so that this logic language L is equivalent to the propositional logic language where the
ground atoms in H ⊆ L are replaced by propositional letters A,B, ...
We use the letters φ, ψ for formulae of L.
We define a (many-valued) valuation v as a mapping v : H → X , which is uniquely
extended in standard way to the homomorphism v : L → X (for example, for any
A,B ∈ H , v(A¯B) = v(A)¯ v(B),¯ ∈ {∧m,∨m,⇒m} and v(¬mA) = ¬mv(A),
where ∧m,∨m,⇒m,¬m are the many-valued conjunction, disjunction, implication and
negation respectively). The set of all many-valued valuations is a strict subset Vm of
the functional space XL that satisfies the homomorphic conditions above.
Based on this propositional many-valued logic language L, we are able to define the
following multi-modal 2-valued algebraic logic languageL∗M , by introducing the modal
non-standard (non monotonic) algebraic truth-functional operators [x] : Y → 2, where
Y = X

⋃
2 such that for any x, y ∈ Y , [x](y) = 1 iff x = y [18]. The intersection

of X and 2 can be non empty as well.
The set of truth values X is a finite set, so that the number of these algebraic modal
operators n = |Y | ≥ 2 is finite as well (|Y | is the cardinality of the set Y ).

Definition 2. SYNTAX: Let LP be a predicate many-valued logic language with a set
of truth values X and (2,∧,∨) be the complete distributive two-valued lattice. The
multi-modal 2-valued logic language L∗M is the set of all modal formulae (we will use
letters Φ, Ψ.. for the formulae of L∗M ) defined as follows:
1. 2 ⊆ L∗M .
2. [x]φ ∈ L∗M , for any x ∈ X,φ ∈ LP .
3. [x]Φ ∈ L∗M , for any x ∈ 2, Φ ∈ L∗M .
4. Φ, Ψ ∈ L∗M implies Φ ∧ Ψ, Φ ∨ Ψ ∈ L∗M .
We denote the sublanguage of L∗M without variables by LM (ground atoms in LM are
considered as propositional letters).

The constants 0, 1 correspond to the tautology and contradiction proposition respec-
tively, and they can be considered as nullary operators in LM .
We can use this 2-valued multi-modal logic language LM in order to define the se-
quents as elements of the Cartesian product LM × LM , i.e., each sequent s is denoted
by Φ ` Ψ , where Φ, Ψ ∈ LM .

Definition 3. SEMANTICS: For any many-valued valuation v ∈ Vm, v : L → X , we
define the ’modal valuation’ α : LM → 2 as follows:
1. α(0) = 0, α(1) = 1.
2. α([x]φ) = 1 iff x = v(φ), for any x ∈ X , φ ∈ L.
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3. α([x]Φ) = 1 iff x = α(Φ), for any x ∈ 2, Φ ∈ LM .
4. α(Φ ∧ Ψ) = α(Φ) ∧ α(Ψ), α(Φ ∨ Ψ) = α(Φ) ∨ α(Ψ), for any Φ, Ψ ∈ LM .
This transformation from many-valued valuations into modal valuations can be ex-
pressed by the mapping F : Vm → V , where V ⊂ 2LM denotes the set of all modal
valuations.

It is easy to verify that the mapping F is a bijection, with its inverse F−1 defined as fol-
lows: for any modal valuation α ∈ V , given in Definition 3, the many-valued valuation
v = F−1(α) : L → X is defined for any φ ∈ L, by v(φ) = x ∈ X iff α([x]φ) = 1.
A many-valued valuation v : L → X , v ∈ Vm satisfies a 2-valued multi-modal formula
Φ ∈ LM iff F(v)(Φ) = 1.
Given two formulae Φ, Ψ ∈ LM , the sequent Φ ` Ψ is satisfied by v if F(v)(Φ) ≤ F(v)(Ψ).
A sequent Φ ` Ψ is an axiom if it is satisfied by every valuation v ∈ Vm ⊂ XL.
From this definition of satisfaction for sequents, we obtain the reflexivity (axiom) Φ ` Φ
and transitivity (cut) inference rule, i.e., from Φ ` Ψ and Ψ ` Υ we deduce Φ ` Υ .
Let us define the set of 2-valued multi-modal literals (or modal atoms) as
Pmm = {[x1]...[xk]A ∈ LM | k ≥ 1 and A ∈ H}.
For example, if v(φ) = x then F(v)([1][x]φ) = 1, while if v(φ) 6= x then F(v)([0][x]φ)
= 1. Notice that the number of nested modal operators can be reduced from the fact that
[0][0] and [1][1] are identities for the formulae in LM . For example, for [x]φ ∈ LM , we
have [0][1][1][0][x]φ ≡ [0][0][x]φ ≡ [x]φ, where ≡ is a standard logic equivalence.
Then, given a formula φ ∈ L, the modal formula [x]φ ∈ LM can be naturally reduced to
an equivalent formula, denoted by [̂x]φ, where the modal operators [x] are applied only
to ground atoms (considered as propositional letters) in H . Moreover, for any formula
Φ ∈ LM , there is an equivalent formula Φ̂ composed by logical connectives ∧, ∨, and
by multi-modal literals in Pmm. A canonical formula can be obtained by the following
reduction:

Definition 4. CANONICAL REDUCTION: Let us define the following reduction rules:
1. For any unary operator ∼∈ Σ, φ ∈ L, and a value x ∈ X ,
[x](∼ φ) 7→ ∨

y∈X. x=∼y[y]φ,
2. For any binary operator ¯ ∈ Σ, φ, ψ ∈ L, and a value x ∈ X ,
[x](φ¯ ψ) 7→ ∨

y,z∈X. x=y¯z([y]φ ∧ [z]ψ).
3. For any binary operator ¯ ∈ {∧,∨}, Φ, Ψ ∈ LM , and a value x ∈ 2,
[x](Φ¯ Ψ) 7→ ∨

y,z∈ 2. x=y¯z([y]Φ ∧ [z]Ψ).
We denote the canonic formula obtained by applying recursively these reduction rules
to the formula [x]Φ by [̂x]Φ.

Proposition 1 The normal reductions in Definition 4 are truth-preserving, that is, for
any x ∈ X and φ ∈ L we have that [x]φ is logically equivalent to [̂x]φ.
Analogously, for any x ∈ 2 and Φ ∈ LM , we have that [x]Φ is logically equivalent
to [̂x]Φ.

Proof: Let us show that the steps of canonical reduction in Definition 4 are truth-
preserving:
1. The first case of reduction: let us suppose that [x](∼ φ) is true but

∨
y∈X.x=∼y[y]φ
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is false. From the truth of [x](∼ φ), we obtain that x = v(∼ φ): let z = v(φ) and,
consequently, [z]φ is true then, from the truth-functional connective ∼, we conclude
that x =∼ z and from the fact that [z]φ is true, we conclude that

∨
y∈X.x=∼y[y]φ must

be true, which is a contradiction. Consequently [x](∼ φ) implies
∨

y∈X.x=∼y[y]φ.
Vice versa, if

∨
y∈X.x=∼y[y]φ is true then there exists z such that [z]φ is true, with

x =∼ z, i.e., x = v(∼ φ) so that [x](∼ φ) is true.
Consequently, [x](∼ φ) iff

∨
y∈X.x=∼y[y]φ.

2. Analogously, for the second case (and 3rd as well) we obtain that
[x](φ¯ ψ) iff

∨
y∈X.x=y¯z([y]φ ∧ [z]ψ).

From the fact that both steps are also truth-preserving, we deduce that any consecutive
execution of them is truth-preserving and consequently [x]φ iff [̂x]φ.
¤
The following proposition shows that the result of the canonical reduction of a formula
Φ ∈ LM is a disjunction of modal conjunctions, which in the case of the formulae
without nested modal operators is a simple disjunctive modal formula.

Proposition 2 Any 2-valued logic formulae Φ ∈ LM is logically equivalent to disjunc-
tive modal formula

∨
1≤i≤m(

∧
1≤j≤mi

([yij1]...[yijkij ])Aij), where for all 1 ≤ i ≤ m,
and 1 ≤ j ≤ mi, we have that 1 ≤ kij , [yijkij ] ∈ X , and Aij ∈ H .
In the case when we have no nested modal operators then kij = 1 for all i, j. Conse-
quently, Φ ∈ LM is logically equivalent to a disjunctive modal formula

∨
1≤i≤m[xi]φi,

where for all 1 ≤ i ≤ m, xi ∈ X , φi ∈ L.

Proof: From Proposition 1 and from the canonical reduction in Definition 4, it is
easy to see that each logically equivalent reduction moves a modal operator towards
propositional letters in H , by the introduction of conjunction and disjunction logic op-
erators only. Thus, when this reduction is completely realized, we obtain a positive
propositional logic formula with modal propositions in Pmm and logic operators ∧
and ∨. It is well known that such a positive propositional formula can be equivalently
(but not uniquely) represented as a disjunction of conjunctions of modal propositions
([yij1]...[yijkij ])Aij ∈ Pmm.
Let us now consider a formula Φ ∈ LM without nested modal operators. Then kij = 1
for all i, j and, from the result above, a formula Φ ∈ LM can be equivalently (but not
uniquely) represented as a disjunction of conjunctive forms

∨
1≤i≤m(

∧
1≤j≤mi

[yij1]Aij).
But we have that

∧
1≤j≤mi

[yij1]Aij = [xi]φi, where for any binary operator ¯ ∈ Σ,
xi = yi11 ¯ ... ¯ yimi1 ∈ X , and φi = Ai1 ¯ ... ¯ Aimi

∈ L. It holds because
α([xi]φi) = 1 iff xi = v(φi) = v(Ai1 ¯ ... ¯ Aimi) = v(Ai1) ¯ ... ¯ v(Aimi) =
yi11 ¯ ...¯ yimi1.
That is, Φ iff

∨
1≤i≤m[xi]φi.

¤
With this normal reduction, by using truth-value tables of many-valued logical con-
nectives, we introduced the structural compositionality and truth preserving for the 2-
valued modal encapsulation of a many-valued logic L as well. In fact, the following
property is valid:
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Proposition 3 Given a many-valued valuation v : L → X and a formula φ ∈ L, the
normal reduct formula [̂x]φ ∈ LM is satisfied by v iff x = v(φ).

Proof: By structural induction on φ: let α = F(v) then we have the following cases:
1. when φ = A ∈ H:
If [̂x]A is satisfied then α([̂x]φ) = α([x]A) = 1 (from Definition 3 and Proposition 1),
thus x = v(A) = v(φ).
2. when φ =∼ ψ, where ∼ is an unary operator in Σ, with y = v(ψ) and x =∼ y:
Suppose, by structural induction, that [̂y]ψ is satisfied, i.e., y = v(ψ). As result, [y]ψ
is true (from Definition 3). Thus,

∨
y∈X.x=∼y[y]ψ is true and by the truth-preservation

(from the reduction 1 in Definition 4) we obtain that [x](∼ ψ) is true, so that, [x]φ
is true, i.e., (by Definition 3) x = v(φ), and (from Proposition 1) [̂x]φ is true. With
x =∼ y =∼ (v(ψ)) = (from the homomorphism of v) = v(∼ ψ) = v(φ).
3. when φ = ψ ¯ ϕ, where ¯ is a binary operator in Σ, with y = v(ψ), z = v(ϕ) and
x = y ¯ z:
By structural induction hypothesis, [̂y]ψ and [̂z]ϕ are satisfied, so that from Proposition
1 and Definition 3, we have that 1 = α([̂y]ψ) = α([y]ψ) and 1 = α([̂z]ϕ) = α([z]ϕ).
Consequently, 1 = α([y]ψ) ∧ α([z]ϕ) = (from the homomorphism 2 in Definition
3) = α([y]ψ ∧ [z]ϕ) = α(

∨
y∈X.x=y¯z([y]ψ ∧ [z]ϕ)) = (from the reduction 2 in

Definition 4) = α([x](ψ ¯ ϕ)) = α([x]φ) = (by Proposition 1) = α([̂x]φ). Thus, [̂x]φ
is satisfied by v and x = y ¯ z = v(ψ) ¯ v(ϕ) = (from the homomorphism of v)
= v(ψ ¯ ϕ) = v(φ).
¤
Thus, as a consequence, for any φ ∈ L and a many-valued valuation v ∈ Vm, we have
that F(v)([̂x]φ) = 1 iff x = v(φ).

3 Many-valued truth and model theoretic semantics

The Gentzen-like system G of the 2-valued propositional logic LM (where the set of
propositional letters corresponds to the set Pmm = {[x1]...[xk]A ∈ LM | k ≥ 1 and
A ∈ H} is a 2-valued distributive logic (DLL in [19]), that is, 2 ⊆ LM , extended
by the set of sequent axioms, defined for each many-valued logic connective in Σ of
the original many-valued logic L. It contains the following axioms (sequents) and rules:

(AXIOMS) The Gentzen-like system G = 〈L, °〉 contains the following sequents in
L for any Φ, Ψ, Υ ∈ LM :
1. Φ ` Φ (reflexive)
2. Φ ` 1, 0 ` Φ (top/bottom axioms)
3. Φ ∧ Ψ ` Φ, Φ ∧ Ψ ` Ψ (product projections: axioms for meet)
4. Φ ` Φ ∨ Ψ , Φ ` Ψ ∨ Φ (coproduct injections: axioms for join)
5. Φ ∧ (Ψ ∨ Υ ) ` (Φ ∧ Ψ) ∨ (Φ ∧ Υ ) (distributivity axiom)
6. The set of Introduction axioms for many-valued connectives:
6.1

∨
y,z∈ 2. x1=y¯z([y]Φ∧[z]Ψ) ` [x1](Φ¯Ψ) for any binary operator ¯ ∈ {∧,∨}.

6.2
∨

y∈X.x=∼y[y]φ ` [x](∼ φ) for any unary operator ∼∈ Σ and φ ∈ L.
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6.3
∨

y,z∈X.x=y¯z([y]φ ∧ [z]ψ) ` [x](φ ¯ ψ) for any binary operator ¯ ∈ Σ and
φ, ψ ∈ L.
7. The set of elimination axioms for many-valued connectives:
7.1 [x1](Φ¯Ψ) ` ∨

y,z∈ 2. x1=y¯z([y]Φ∧[z]Ψ) for any binary operator ¯ ∈ {∧,∨}.
7.2 [x](∼ φ) ` ∨

y∈X.x=∼y[y]φ for any unary operator ∼∈ Σ and φ ∈ L.
7.3 [x](φ ¯ ψ) ` ∨

y,z∈X.x=y¯z([y]φ ∧ [z]ψ) for any binary operator ¯ ∈ Σ and
φ, ψ ∈ L.

(INFERENCE RULES) G is closed under the following inference rules:
1. Φ `Ψ, Ψ `Υ

Φ `Υ (cut/ transitivity rule)
2. Φ `Ψ, Φ `Υ

Φ `Ψ∧Υ , Φ `Ψ, Υ `Ψ
Φ∨Υ `Ψ (lower/upper lattice bound rules)

3. Φ `Ψ
σ(Φ) `σ(Ψ) (substitution rule: σ is substitution (γ/p)).

¤
The axioms from 1 to 5 and the rules 1 and 2 are taken from [19] for the DLL and
it was shown that this sequent based Genzen-like system is sound and complete. The
new axioms 6 and 7 correspond to the canonical (equivalent) reductions in Definition
4. The set of sequents that define the poset of the classic 2-valued lattice of truth values
(2,≤) is a consequence of the top/bottom axioms: for any two x, y ∈ 2, if x ≤ y then
x ` y ∈ G.
Thus, for many-valued logics, we obtain a normal modal Gentzen-like deductive sys-
tem, where each sequent is a valid truth-preserving consequence-pair defined by the
poset of the complete lattice (2,≤) of classic truth values (which are also the constants
of this positive propositional language LM ), so that each occurrence of the symbol `
can be substituted by the partial order ≤ of this complete lattice (2,≤) .

Example 1: Let us consider the Godel’s 3-valued logic X = {0, 1
2 , 1}, and its 3-valued

implication logic connective ⇒ given by the following truth-table:

⇒ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

One of the possible m-sequents for introduction rules for this connective, taken from
[12], (each rule corresponds to the conjunction of disjunctive forms, where each dis-
junctive form is one m-sequent in the premise), is

〈Γ |4,φ|Π,φ〉 〈Γ1,ψ|41|Π1〉
〈Γ,Γ1,φ⇒ψ|4,41|Π,Π1〉 ⇒: 0, 〈Γ |4|Π,φ〉 〈Γ1|41,ψ|Π1〉

〈Γ,Γ1,|4,41,φ⇒ψ|Π,Π1〉 ⇒: 1
2

〈Γ,φ|4,φ|Π,ψ〉 〈Γ1,φ|41,ψ|Π1,ψ〉
〈Γ,Γ1,|4,41|Π,Π1,φ⇒ψ〉 ⇒: 1

but in our approach, we obtain the unique set of binary sequent introduction axioms as
follows:

([12 ]φ ∧ [0]ψ) ∨ ([1]φ ∧ [0]ψ) ` [0](φ ⇒ ψ)
[1]φ ∧ [ 12 ]ψ ` [ 12 ](φ ⇒ ψ)∨

x,y∈X & (x,y)/∈ S ([x]φ ∧ [y]ψ) ` [1](φ ⇒ ψ)

Proceedings of the Fifth Indian International Conference on Artificial Intelligence

528



where S = {( 1
2 , 0), (1, 0), (1, 1

2 )},
and elimination axioms:
[0](φ ⇒ ψ) ` ([12 ]φ ∧ [0]ψ) ∨ ([1]φ ∧ [0]ψ)
[ 12 ](φ ⇒ ψ) ` [1]φ ∧ [ 12 ]ψ
[1](φ ⇒ ψ) ` ∨

x,y∈X & (x,y)/∈ S ([x]φ ∧ [y]ψ).
¤
Definition 5. For any two formulae Φ, Ψ ∈ LM when the sequent Φ ` Ψ is satisfied by
a 2-valued modal valuation α : LM → 2 from Definition 3 (that is, when α(Φ) ≤ α(Ψ)
as in standard 2-valued logics), we say that it is satisfied by the many-valued valuation
v = F−1(α) : L → X .
This sequent is a tautology if it is satisfied by all modal valuations α ∈ V , i.e., when
∀v ∈ Vm.(F(v)(Φ) ≤ F(v)(Ψ)).
For a normal Gentzen-like sequent system G = 〈L, °〉 of a many-valued logic language
L, with the set of sequents L ⊆ LM × LM , we tell that a many-valued valuation v is
its model if it satisfies all sequents in G.
The set of all models of a given set of sequents (theory) Γ is:
ModΓ = {v ∈ Vm | ∀(Φ ` Ψ) ∈ Γ (F(v)(Φ) ≤ F(v)(Ψ))} ⊆ Vm ⊂ XL.

Proposition 4 SEQUENT’S BIVALUATIONS AND SOUNDNESS: Let us define the map-
ping B : Vm → 2LM×LM from valuations into sequent bivaluations such that for any
valuation v ∈ Vm, we obtain the sequent bivaluation β = B(v) = eq◦ < π1,∧ >
◦(F(v) × F(v)) : LM × LM → 2, where π1 is the first projection, ◦ is the functional
composition and eq : 2 × 2 → 2 is the equality mapping such that eq(x, y) = 1 iff
x = y.
Then, a sequent s = (Φ ` Ψ) is satisfied by v iff β(s) = B(v)(s) = 1.
All axioms of the Gentzen like sequent system G, of a many-valued logic language L
based on a set X of truth values, are tautologies, and all its rules are sound for model
satisfiability and preserve the tautologies.

Proof: From the definition of a bivaluation β, we have that
β(Φ ` Ψ) = β(Φ;Ψ) = eq◦ < π1,∧ > ◦(F(v)× F(v))(Φ; Ψ)
= eq◦ < π1,∧ > (F(v)(Φ)× F(v)(Ψ))
= eq < π1(F(v)(Φ), F(v)(Ψ)), ∧(F(v)(Φ), F(v)(Ψ)) >
= eq(F(v)(Φ), F(v)(Φ) ∧ F(v)(Ψ)).
Thus β(Φ ` Ψ) = 1 iff F(v)(Φ) ≤ F(v)(Ψ), i.e., when this sequent is satisfied by v.
It is straightforward to check that all axioms in G are tautologies (all constant sequents
specify the poset of the complete lattice (2,≤) of classic 2-valued logic, thus they are
tautologies). It is straightforward to check that all rules preserve the tautologies. More-
over, if all premises of a given rule in G are satisfied by a given many-valued valuation
v : L → X then also the deduced sequent of this rule is satisfied by the same valuation,
i.e., the rules are sound for the model satisfiability.
¤
It is easy to verify that this entailment is equal to the classic propositional entailment.
Remark: It is easy to observe that each sequent is, from the logic point of view, a
2-valued object so that all inference rules are embedded into the classic 2-valued frame-
work, i.e., given a bivaluation β = B(v) : LM × LM → 2, we have that a sequent
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s = Φ ` Ψ is satisfied, β(s) = 1 iff F(v)(Φ) ≤ F(v)(Ψ), so that we have a direct
relationship between sequent bivaluations β and many-valued valuations v.
This sequent feature, which is only an alternative formulation for the 2-valued classic
logic, is fundamental in the framework of many-valued logics where the semantics for
the entailment based on the algebraic matrices (X,D) is often subjective and arbitrary.
Let us consider, for example, the fuzzy logic with the uniquely fixed semantics for all
logical connectives, where the subset of designated elements D ⊆ X is an arbitrary-
subjective choice between the infinite number of closed intervals [a, 1] also for very
restricted interval. For example, 0.83 ≤ a ≤ 0.831. It does not happen in the classic
2-valued logics where a different logic semantics (entailment) is obtained by adopting
only different semantics for some of its logical connectives, usually for negation opera-
tor. This property of the classic 2-valued logic can be propagated to many-valued logics
by adopting the principle of classic truth-invariance for the entailment. In that case, for
fixed semantics of all logical connectives of a given language, we obtain a unique logic.
The definition of the 2-valued entailment in the sequent system G, given in Definition 5,
can replace the current entailment based on algebraic matrices (X, D) where D ⊆ X
is a subset of designated elements. Thus, we are now able to introduce the many-valued
valuation-based (i.e., model-theoretic) semantics for many-valued logics:

Definition 6. [8] A many-valuedmodel-theoretic semantics of a given many-valued
logic L, with a Gentzen system G = 〈L, °〉, is the semantic deducibility relation |=m ,
defined for any Γ = {si = (Φi ` Ψi) | i ∈ I} and a sequent s = (Φ ` Ψ) ∈ L ⊆
LM × LM by :
Γ |=m s iff ”all many-valued models of Γ are the models of s”, that is,
iff ∀v ∈ Vm( ∀(Φi ` Ψi) ∈ Γ (F(v)(Φi) ≤ F(v)(Ψi) implies F(v)(Φ) ≤ F(v)(Ψ)).

Lemma 1. For any Γ = {si = (Φi ` Ψi) | i ∈ I} and a sequent s = (Φ ` Ψ), we
have that Γ |=m s iff ∀v ∈ ModΓ ( B(v)(s) = 1).

Proof: We have that Γ |=m s iff
∀v ∈ Vm( ∀(Φi ` Ψi) ∈ Γ (F(v)(Φi) ≤ F(v)(Ψi) implies F(v)(Φ) ≤ F(v)(Ψ))
iff ∀v ∈ ModΓ ( ∀(Φi ` Ψi) ∈ Γ (F(v)(Φi) ≤ F(v)(Ψi) implies F(v)(Φ) ≤
F(v)(Ψ))
iff ∀v ∈ ModΓ ( F(v)(Φ) ≤ F(v)(Ψ))
iff ∀v ∈ ModΓ ( B(v)(s) = 1).
¤
It is easy to verify that any many-valued logic has a Gentzen-like system G = 〈L,°〉
(see the definition at the beginning of this section) that is a normal logic.

Theorem 1 Many-valued model theoretic semantics is an adequate semantics for a
many-valued logic L specified by a Gentzen-like logic system G = 〈L,°〉, that is, it is
sound and complete. Consequently, Γ |=m s iff Γ ° s.

Proof: Let us prove that for any many valued model v ∈ ModΓ , the obtained sequent
bivaluation β = B(v) : LM × LM → 2 is the characteristic function of the closed
theory Γv = C(T ) with T = {Φ ` 1, 1 ` Φ | Φ ∈ Pmm, F(v)(Φ) = 1} ⋃ {Φ `
0, 0 ` Φ | Φ ∈ Pmm, F(v)(Φ) = 0}.
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1. Let us show that for any sequent s, s ∈ Γv implies β(s) = 1:
First of all, for any sequent s ∈ T : if it is of the form Φ ` 1 or 1 ` Φ (where Φ ∈ Pmm)
then F(v)(Φ) = 1, thus s is satisfied by v (it holds that 1 ≤ 1 in both cases); if it is of
the form Φ ` 0 or 0 ` Φ then F(v)(Φ) = 0, thus s is satisfied by v (it holds that 0 ≤ 0
in both cases). Consequently, all sequents in T are satisfied by v.
From Proposition 4, all inference rules in G are sound w.r.t. the model satisfiability.
Thus for any deduction T ° s (i.e., s ∈ Γv) where all sequents in premises are satisfied
by the many-valued valuation (model) v, the deduced sequent s = (Φ ` Ψ) must be
satisfied as well, that is, F(v)(Φ) ≤ F(v)(Ψ), i.e., β(s) = 1.
2. Let us show that for any sequent s, β(s) = 1 implies s ∈ Γv: For any sequent
s = (Φ ` Ψ) ∈ LM × LM if β(s) = 1 we have one of the two possible cases:
2.1 Case when F(v)(Φ) = 0. Then (from Proposition 2) Φ can be substituted by∨

1≤i≤m(
∧

1≤j≤mi
([yij1]...[yijkij ])Aij), i.e., F(v)(

∨
1≤i≤m(

∧
1≤j≤mi

([yij1]...[yijkij ])
Aij)) =

∨
1≤i≤m F(v)(

∧
1≤j≤mi

([yij1]...[yijkij ])Aij) = 0,
that is, for every 1 ≤ i ≤ m, F(v)(

∧
1≤j≤mi

([yij1]...[yijkij ])Aij) = 0, i.e.
(
∧

1≤j≤mi
([yij1]...[yijkij ]Aij) ` 0) ∈ T . Consequently, by applying the inference rule

2b, we deduce T ° (
∨

1≤i≤m(
∧

1≤j≤mi
([yij1]...[yijkij ])Aij) ` 0), that is, by the

substitution inference rule (for σ :
∨

1≤i≤m(
∧

1≤j≤mi
([yij1]...[yijkij ])Aij) 7→ Φ) we

obtain that T ° (Φ ` 0). From the fact that 0 ` Ψ is an axiom in G, and by applying
the transitive inference rule, we obtain that T ° (Φ ` Ψ), i.e., s ∈ C(T ) = Γv .
2.2 Case when F(v)(Φ) = 1. In this case, from the fact that this sequent is satisfied,
F(v)(Ψ) = 1 must be true as well. Thus, we can substitute Ψ by 1∨Ψ , so that we obtain
the axiom 1 ` 1∨Ψ in G and, consequently, by applying the substitution inference rule
(for σ : 1 ∨ Ψ 7→ Ψ ), we obtain T ° (1 ` Ψ). From the fact that Φ ` 1 is an axiom
in G and by applying the transitive inference rule, we obtain that T ° (Φ ` Ψ), i.e.,
s ∈ C(T ) = Γv .
So, from (1) and (2), we obtain that β(s) = 1 iff s ∈ Γv , i.e., the sequent
bivaluation β is the characteristic function of a closed set. Consequently, any many-
valued model v of this many-valued logic L corresponds to the closed bivaluation β
which is a characteristic function of a closed theory of sequents: we define the set
of all closed bivaluations obtained from the set of many-valued models v ∈ ModΓ :
BivΓ = {Γv | v ∈ ModΓ }. From the fact that Γ is satisfied by every v ∈ ModΓ , we
have that for every Γv ∈ BivΓ , Γ ⊆ Γv , so that C(Γ ) =

⋂
BivΓ (an intersection of

closed sets is a closed set also). Thus, for s = (Φ ` Ψ), Γ |=m s iff
∀v ∈ ModΓ ( ∀(Φi ` Ψi) ∈ Γ (F(v)(Φi) ≤ F(v)(Ψi)) implies F(v)(Φ) ≤ F(v)(Ψ))
iff ∀v ∈ ModΓ ( ∀(Φi ` Ψi) ∈ Γ (β(Φi ` Ψi) = 1) implies β(Φ ` Ψ) = 1)
iff ∀v ∈ ModΓ ( ∀(Φi ` Ψi) ∈ Γ ((Φi ` Ψi) ∈ Γv) implies s ∈ Γv)
iff ∀Γv ∈ BivΓ ( Γ ⊆ Γv implies s ∈ Γv)
iff ∀Γv ∈ BivΓ ( s ∈ Γv), because Γ ⊆ Γv for each Γv ∈ BivΓ

iff s ∈ ⋂
BivΓ = C(Γ ), that is, iff Γ ° s.

¤
Thus, in order to define the model-theoretic semantics for many-valued logics, we do
not need to use the matrices: we are able to use only the many-valued valuations and
many-valued models (i.e., the valuations which satisfy all sequents in Γ of a given
many-valued logic L). This point of view is used also for the definition of a new repre-
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sentation theorem for many-valued complete lattice based logics in [10,7].
Here, in a many-valued logic L, specified by a set of sequents in Γ , for a formula
φ ∈ L that has the same value x ∈ X (for any truth value x) for all many-valued mod-
els v ∈ ModΓ , its modal version [x]φ is a theorem; that is,
∀v ∈ ModΓ (v(φ) = x) iff Γ ° (1 ` [x]φ),
that corresponds to the truth-invariance many-valued entailment (MV) in subsection
1.1. Such a value x ∈ X does not need to be a designated element x ∈ D, as in the
matrix semantics for a many-valued logic. This fact explains way we do not need a se-
mantic specification by matrix designated elements.

Example 2: Let us prove that given an assumption Γ = {1 ` [x]φ, 1 ` [y]ψ} then
[z](φ¯ ψ) for z = x¯ y is deduced from Γ , that is Γ ° ([z](φ¯ ψ)); or equivalently
if [x]φ and [y]ψ are valid (i.e., for every valuation v ∈ Vm, v : L → X , the values of φ
and ψ are equal to x and y respectively, i.e. ∀v ∈ Vm(v(φ) = x and v(ψ) = y)) then
[z](φ¯ ψ) is valid as well.
As a first step, we introduce the equivalence relation ≡ such that Φ ≡ Ψ iff Φ ` Ψ and
Ψ ` Φ (i.e., Φ iff Ψ ). Consequently, from the reflexivity axiom in G, Φ ≡ Φ, as for
example 1 ≡ 1. The equivalent formulae can be used in the substitution inference rule:
if Φ ≡ Ψ then we can use the substitution of Φ by Ψ , that is, the substitution σ : Φ 7→ Ψ .
Let us show the simple equivalence Φ ∨ Φ ≡ Φ:
from the reflexivity axiom Φ ` Φ, by using the upper bound inference rule (when
Ψ = Φ), we deduce Φ ∨ Φ ` Φ. Then, from the axioms for join Φ ` Φ ∨ Φ, we obtain
Φ ∨ Φ ≡ Φ.
Now, from the assumptions 1 ` [x]φ, 1 ` [y]ψ ∈ Γ , by the lower bound inference
rule in G, we obtain (a) 1 ` [x]φ ∧ [y]ψ, i.e., Γ ° (1 ` [x]φ ∧ [y]ψ). Let z = x ¯ y
and let us denote [x]φ ∧ [y]ψ) by Φ, so that (a) becomes (a’) 1 ` Φ. Now we can
take the axiom for join, (b) Φ ` Φ ∨ ∨

v,w∈X.v¯w=z([v]φ ∧ [w]ψ), so from (a’) and
(b) and the transitivity rule, we obtain 1 ` Φ ∨ ∨

v,w∈X.v¯w=z([v]φ ∧ [w]ψ), i.e., (c)
1 ` Φ ∨ Φ ∨ Ψ , where Ψ =

∨
v,w∈X(v 6=x,w 6=y,v¯w=z)([v]φ ∧ [w]ψ). Thus, by sub-

stitution σ : {1 7→ 1, Φ ∨ Φ 7→ Φ} and by applying the substitution rule to (c), we
deduce the sequent 1 ` Φ ∨ Ψ . That is, (d) 1 ` ∨

v,w∈X.v¯w=z([v]φ ∧ [w]ψ) (from
Φ∨Ψ =

∨
v,w∈X,v¯w=z([v]φ∧ [w]ψ)). Consequently, by applying the transitivity rule

to the sequent (d) and the introduction axiom
∨

v,w∈X,v¯w=z([v]φ∧[w]ψ) ` [z](φ¯ψ),
we deduce 1 ` [z](φ¯ ψ), that is Γ ° (1 ` [z](φ¯ ψ)).
Notice that in such deductions, no value of x, y, z has to be the designated value. We do
not make any distinction for the truth values in X .
¤
Remark: There is also another way, alternative to 2-valued sequent systems, to re-
duce the many-valued logics into ”meta” 2-valued logics: it is based on Ontological
encapsulation [22,18], where each many-valued proposition (or many-valued ground
atom p(a1, .., an)) is ontologically encapsulated into the ”flattened” 2-valued atom
pF (a1, .., an, x) (by enlarging original atoms with a new logic variable whose domain
of values is the set of truth values of the complete lattice x ∈ X: roughly, ”p(a1, .., an)
has a value x” iff pF (a1, .., an, x) is true). In fact, such a flattened atom is logically
equivalent to the sequent (1 ` [x]p(a1, .., an)).
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4 Autoreferential Kripke-style semantics

We are able to define an equivalence relation ≈L between the formulae of any many-
valued logic based on the set of truth values X , in order to define the Lindenbaum
algebra for this logic (L/ ≈L), where for any two formulae φ, ψ ∈ L, φ ≈L ψ iff
∀v ∈ Vm(v(φ) = v(ψ)).
Thus, the elements of this quotient algebra L/ ≈L are the equivalence classes, denoted
by 〈φ〉.
In particular, we consider an equivalence class 〈φ〉 (the set of all equivalent formu-
lae to φ w.r.t. ≈L) that has exactly one constant x ∈ X , which is an element of
this equivalence class (we abuse a denotation here by denoting a formula such that
it has a constant logic value x ∈ X for every interpretation v by x as well), and
we can use it as the representation element for this equivalence class 〈x〉. Thus, ev-
ery formula in this equivalence class has the same truth-value as this constant. Con-
sequently, we have the injection iX : X → L/≈L between elements in the com-
plete lattice (X,≤) and elements in the Lindenbaum algebra such that for any logic
value x ∈ X , we obtain the equivalence class 〈x〉 = iX(x) ∈ L/≈L

. It is easy
to extend this injection into a monomorphism between the original algebra and this
Lindenbaum algebra, by definition of correspondent connectives in this Lindenbaum
algebra. For example: 〈x ∧ y〉 = iX(x ∧ y) = iX(x) ∧L iX(y) = 〈x〉 ∧L 〈y〉,
〈¬x〉 = iX(¬x) = ¬LiX(x) = ¬L〈x〉, etc..
In an autoreferential semantics [7,8,23], we assume that each equivalence class of for-
mulae 〈φ〉 in this Lindenbaum algebra corresponds to one ”state - description”. In par-
ticular, we are interested in the subset of ”state - descriptions” that are invariant w.r.t.
many-valued interpretations v, so that can be used as the possible worlds in the Kripke-
style semantics for the original many-valued modal logic. However from the injection
iX , we can take only its inverse image x = i−1

X (〈x〉) ∈ X for such an invariant ”state
-description” 〈x〉 ∈ L/≈L

.
Consequently, the set of possible worlds in this autoreferential semantics corresponds
to the set of truth values X .
Now we consider the Kripke model (introduced in subsection 1.2) for the 2-valued
multi-modal logic language LM given in Definition 2, obtained from the many-valued
predicate logic language LP (defined at the beginning of Section 2):

Definition 7. KRIPKE SEMANTICS: Let LP be a many-valued predicate logic lan-
guage, based on a set X of truth values, with a set of predicate letters P and Herbrand
base H . Let Mv = (F, S, V ) be a Kripke model of its correspondent 2-valued multi-
modal logic language L∗M with the frame F = (W, {Rw = W × {w} | w ∈ W})
where W = X

⋃
2 and with mapping V : W × P → ⋃

n<ω2Sn

such that for any
n-ary predicate p ∈ P and tuple (c1, .., cn) ∈ Sn, there exists a unique w ∈ W such
that V (w, p)(c1, .., cn) = 1.
It defines the Herbrand interpretation v : H → X such that v(p(c1, .., cn)) = w iff
V (w, p)(c1, .., cn) = 1, and its unique homomorphic extension to all ground formulae
v : L → X .
Let g : V ar → S be an assignment for object variables νi ∈ V ar, i = 1, 2, .., and
w ∈ W then the satisfaction relation |= is defined by Mv |=g,w φ iff v(φ/g) = w,
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for any many-valued formula φ ∈ LP . It is extended to all modal formulae in L∗M as
follows:
1. Mv |=g,w 1 and Mv 2g,w 0 for tautology and contradition respectively.
2. Mv |=g,w [x]Φ iff ∀y((w, y) ∈ Rx implies Mv |=g,y Φ) for any Φ ∈ L∗M or
Φ ∈ LP .
3. Mv |=g,w Φ ∧ Ψ iff Mv |=g,w Φ and Mv |=g,w Ψ for Φ, Ψ ∈ L∗M .
4. Mv |=g,w Φ ∨ Ψ iff Mv |=g,w Φ or Mv |=g,w Ψ for Φ, Ψ ∈ L∗M .

Notice that, based on this Kripke model Mv , a many-valued valuation v : H → X is
defined with a unique standard homomorphic extension v : L → X as follows (from
definition above): for any ground atom p(c1, .., cn) ∈ H , we define v(p(c1, .., cn)) = w
where w ∈ X is a unique value which satisfies V (w, p)(c1, .., cn) = 1.
Conversely, given a many-valued model v : H → X for a many-valued predicate logic
language LP , we define a Kripke model with mapping V such that for any w ∈ W , n-
ary p ∈ P , and a tuple (c1, .., cn) ∈ Sn, V (w, p)(c1, .., cn) = 1 iff v(p(c1, .., cn)) = w.
Let Ψ/g ∈ LM be a ground formula obtained from Ψ ∈ L∗M by assignment g then we
denote the set of worlds where the ground formula Ψ/g ∈ LM is satisfied by ‖Ψ/g‖,
with ‖p(ν1, .., νn)/g‖ = {v(p(g(ν1), .., g(νn)))} and ‖φ/g‖ = {v(φ/g))}, φ ∈ L.
Thus, different from the original many-valued ground atoms inL, which can be satisfied
only in one single world, the modal atoms in LM have the standard 2-valued property,
that is, they are true or false in these Kripke models and, consequently, are satisfiable in
all possible worlds or absolutely not satisfiable in any world. Thus, our positive multi-
modal logic with modal atoms LM satisfies the classic 2-valued properties:

Proposition 5 For any ground formula Φ/g of the positive multi-modal logic LM de-
fined in Definition 2, ‖Φ/g‖ ∈ {∅,W}, where ∅ is the empty set.

Proof: By structural induction :
1. ‖1‖ = W and ‖0‖ = ∅.
2. ‖[x]φ/g‖ = W if x = v(φ/g); ∅ otherwise.
Let Φ, Ψ be the two atomic modal formulae such that, by inductive hypothesis ‖Φ/g‖, ‖Ψ/g‖ ∈
{∅,W}. Then,
3. ‖[x]Φ‖ = {w ∈ W | x ∈ ‖Φ/g‖} = W if ‖Φ/g‖ = W; ∅ otherwise.
4. ‖(Φ ∧ Ψ)/g‖ = ‖Φ/g‖⋂ ‖Ψ/g‖ ∈ {∅,W}.
5. ‖(Φ ∨ Ψ)/g‖ = ‖Φ/g‖⋃ ‖Ψ/g‖ ∈ {∅,W}.
Thus, from the fact that any formula Φ ∈ L∗M is logically equivalent to disjunctive
modal formula

∨
1≤i≤m(

∧
1≤j≤mi

([yij1]...[yijkij
])Aij) (from Proposition 2), where

each Aij ∈ H is a ground atom (such that by inductive hypothesis for any modal atom
it is true that ‖([yij1]...[yijkij ])Aij/g‖ ∈ {∅,W}), and from points 3 and 4 above, we
obtain that
‖Φ/g‖ = ‖∨

1≤i≤m(
∧

1≤j≤mi
([yij1]...[yijkij ])Aij/g)‖ ∈ {∅,W}.

¤
The following proposition demonstrates the existence of a one-to-one correspondence
between the unique many-valued model of a many-valued logicL and the Kripke model
of a multi-modal positive logic LM .
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Proposition 6 For any many-valued formula φ/g ∈ LP ,
v(φ/g) = x iff F(v)([x]φ/g) = 1 iff ‖[x]φ/g‖ = W .

Proof: For any ground formula, F(v)([x]φ/g) = 1 iff (by Proposition 1) F(v)([̂x]φ/g) =
1 iff (by Proposition 3) v(φ/g) = x.
Thus, it is enough to prove that α([̂x]φ/g) = 1 iff ‖[x]φ/g‖ = W , where α = F(v).
In the first step, proceeding from left to right, we demonstrate it by structural induction
on the length (number of logic connectives) of the formula φ :
1. The simplest case when φ/g = p(c1, .., ck), ci = g(νi) ∈ S, 1 ≤ i ≤ k, is a ground
atom for the k-ary predicate letter p ∈ P . Then, if α([̂x]φ/g) = α( ̂[x]p(c1, .., ck)) =
α([x]p(c1, .., ck)) = 1, then (by Proposition 3) x = v(p(c1, .., ck)), and from Defini-
tion 7 we have that ‖[x]φ/g‖ = W .
2. Let us now suppose, by inductive hypothesis, that it holds for all formulae with N
logical connectives in Σ. Then, for any formula φ ∈ LP with N+1 logical connectives,
we have the following two cases:
2.1. Case when φ =∼ φ1 where ∼∈ Σ is a unary connective. Then, if α([̂x]φ/g) =
(from Definition 4) = α(

∨
y∈X.x=∼y

̂[y]φ1/g) = (from Proposition 1) = α(
∨

y∈X.x=∼y

[y]φ1/g) = (from the homomorphism of α) =
∨

y∈X.x=∼y α([y]φ1/g) = 1. Thus,
there exists y ∈ X such that x =∼ y and α([y]φ1/g) = 1. That is, from Propo-
sition 1, α( ̂[y]φ1/g) = 1 and from the inductive hypothesis for this y, we obtain (a)
‖[y]φ1/g‖ = W . So, we obtain ‖[x]φ/g‖ = ‖∨

y∈X.x=∼y
̂[y]φ1/g‖ = (from the point

5 in Definition 7) =
⋃

y∈X.x=∼y ‖[y]φ1/g‖ = (from (a)) = W .
2.2. Case when φ = φ1 ¯ φ2, where ¯ ∈ Σ is a binary connective.
Then, if α( ̂[x](φ1 ¯ φ2)/g) = (from Definition 4) = α(

∨
y,z∈X.x=y¯z( ̂[y]φ1/g∧ ̂[z]φ2/g))

= (from Proposition 1) = α(
∨

y,z∈X.x=y¯z([y]φ1/g ∧ [z]φ2/g)) = (from the homo-
morphism of α) =

∨
y,z∈X.x=y¯z(α([y]φ1/g) ∧ α([z]φ2/g)) = 1. Then, there exist

y, z ∈ X such that x = y ¯ z with α([y]φ1/g) = 1 and α([z]φ2/g) = 1. That is, from
Proposition 1 α( ̂[y]φ1/g) = 1, α( ̂[z]φ2/g) = 1, and from inductive hypothesis for this
y we obtain ‖[y]φ1/g‖ = W and ‖[z]φ2/g‖ = W , that is (b) ‖[y]φ1/g ∧ [z]φ2/g‖ =
‖[y]φ1/g‖⋂ ‖[z]φ2/g‖ = W . So, we obtain ‖[x]φ/g‖ = ‖∨

y,z∈X.x=y¯z( ̂[y]φ1/g ∧
̂[z]φ2/g)‖ = (from the point 5 in Definition 7) =

⋃
y,z∈X.x=y¯z ‖[y]φ1/g∧[z]φ2/g‖ =

(from (a)) = W .
Consequently, we have shown that α([̂x]φ/g) = 1 implies ‖[x]φ/g‖ = W . Con-
versely, the proof from right to left is analogous.
Let us now show that for any ground formula Φ/g ∈ LM , α(Φ/g) = 1 iff ‖Φ/g‖ =
W: From the fact that any Φ ∈ LM is logically equivalent to disjunctive modal formula∨

1≤i≤m(
∧

1≤j≤mi
([yij1]...[yijkij

])Aij), we obtain that if
α(Φ/g) = α(

∨
1≤i≤m(

∧
1≤j≤mi

([yij1]...[yijkij ])Aij/g)) =
=

∨
1≤i≤m(

∧
1≤j≤mi

α(([yij1]...[yijkij
])Aij/g)) = 1

then there exists i (1 ≤ i ≤ m) such that for all 1 ≤ j ≤ mi, α(([yij1]...[yijkij
])Aij/g) =

1, i.e., ‖([yij1]...[yijkij ])Aij/g‖ = W . Thus, ‖∧
1≤j≤mi

([yij1]...[yijkij ])Aij/g‖ =⋂
1≤j≤mi

‖([yij1]...[yijkij
])Aij/g) ‖ = W and consequently ‖Φ/g‖ = W and vice
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versa.
¤

Corollary 1 Given a many-valued model v for a many-valued logic language LP , for
any ground formula Φ/g ∈ LM , F(v)(Φ/g) = 1 iff ‖Φ/g‖ = W , (i.e., Φ/g is true
in the Kripke model in Definition 7).

Proof: By structural recursion and by Propositions 5 and 6.
¤
From this corollary, we obtain that any true formula Φ ∈ LM is also true in the Kripke
model, and vice versa. That is, the autoreferential Kripke-stile semantics for the multi-
modal logic LM , in Definition 7, is sound and complete.

5 Conclusion

The main goal of this paper is the development of a new binary sequent calculi, with
truth-invariance entailment, for a many-valued predicate logic languageLP with a finite
set of truth values X , and the definition of Kripke-like semantics for it, that are both
sound and complete. We have not used any ordering of truth values in X nor any alge-
braic matrix with a strict subset of designated truth values. So, from this point of view,
it is the most general semantic approach for the many-valued logics. In more specific
cases, when the set X is a complete lattice of truth values, there is also another non-
matrix based approach (with truth-preserving entailment) presented in [7,10] where the
sequent system is based on the lattice poset of truth values.
In comparison with the standard historical approach based on m-sequents, this approach
is deterministic in the way that the axiomatic sequent system is uniquely determined by
the set of many-valued logical connectives. This approach is more compact and is a
particular implementation of standard two-sided sequent systems, where the left side
of each sequent is just a single formula as well. Moreover, this approach is not matrix-
based and does not need any definition of a subset of designated elements in X . In other
approaches, for each subjectively defined subset of designated truth values (consider for
example the logic with n = 1030 truth-values, X = { i

n | 1 ≤ i ≤ n}), for the same
logic language L and the same semantics for its logical connectives, we obtain a differ-
ent deductive system. Here this subjectiveness is avoided, based on the generalization
of the 2-valued truth-invariance principle for the logic entailment, and the resulting de-
ductive system for a many-valued logic with fixed semantics of its logical connectives
is general and uniquely defined as in all cases of the 2-valued logics.
Different from other approaches, we defined a Kripke-like semantics for this many-
valued deductive system as well, because our encapsulation of many-valued logic into
the 2-valued sequent system is based on the introduction of the finite set of modal oper-
ators for each truth value in X . That is, this 2-valued encapsulation is a modal as in [18].
The frame in this autoreferential Kripke semantics, based on the Lindenbaum algebra
considerations, is finite and uniquely determined by the set of truth values in X .
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2. G.Gentzen, “Über die Existenz unabhängiger Axiomensysteme zu unendlichen
Satzsystemen,” Mathematische Annalen, 107, pp. 329–350, 1932.
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